首页> 外文OA文献 >An auction-based approach with closed-loop bid adjustment to dynamic task allocation in robot teams
【2h】

An auction-based approach with closed-loop bid adjustment to dynamic task allocation in robot teams

机译:基于拍卖的方法,对机器人团队中的动态任务分配进行闭环出价调整

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dynamic task allocation is among the most difficult issues in multi-robot coordination, although it is imperative for a multitude of applications. Auction-based approaches are popular methods that allocate tasks to robots by assembling team information at a single location to make practicable decisions. However, a main deficiency of auction-based methods is that robots generally do not have sufficient information to estimate reliable bids to perform tasks, particularly in dynamic environments. While some techniques have been developed to improve bidding, they are mostly open-looped without feed-back adjustments to tune the bid prices for subsequent tasks of the same type. Robots' bids, if not assessed and adjusted accordingly, may not be trustworthy and would indeed impede team performance. To address this issue, we propose a closed-loop bid adjustment mechanism for auction-based multi-robot task allocation, with an aim to evaluate and improve robots' bids, and hence enhance the overall team performance. Each robot in a team maintains and uses its own track record as closed-loop feedback information to adjust and improve its bid prices. After a robot has completed a task, it assesses and records its performance to reflect the discrepancy between the bid price and the actual cost of the task. Such performance records, with time-discounting factors, are taken into account to damp out fluctuations of bid prices. Adopting this adjustment mechanism, a task would be more likely allocated to a competent robot that submits a more accurate bid price, and hence improve the overall team performance. Simulation of task allocation of free-range automated guided vehicles serving at a container terminal is presented to demonstrate the effectiveness of the adjustment mechanism.
机译:动态任务分配是多机器人协调中最困难的问题之一,尽管它对于众多应用程序来说是必不可少的。基于拍卖的方法是一种流行的方法,通过在单个位置组合团队信息来做出可行的决策,从而将任务分配给机器人。但是,基于拍卖的方法的主要缺陷是,机器人通常没有足够的信息来估计执行任务的可靠出价,尤其是在动态环境中。尽管已经开发出一些技术来改善出价,但是它们大多是开环的,没有反馈调整来调整相同类型后续任务的出价。如果不对机器人的出价进行相应的评估和调整,则机器人的出价可能不可靠,并且确实会阻碍团队的表现。为了解决这个问题,我们提出了一种基于拍卖的多机器人任务分配的闭环出价调整机制,旨在评估和提高机器人的出价,从而提高整体团队绩效。团队中的每个机器人都维护并使用自己的跟踪记录作为闭环反馈信息,以调整和提高其出价。机器人完成任务后,它将评估并记录其性能,以反映出价和任务实际成本之间的差异。考虑到这种具有时间折扣因素的绩效记录,以抑制投标价格的波动。采用这种调整机制,任务将更有可能分配给能够提交更准确的投标价格的胜任的机器人,从而提高团队的整体绩效。提出了在集装箱码头服务的自由程自动引导车辆的任务分配模拟,以证明调整机制的有效性。

著录项

  • 作者

    Choi SH; Zhu WK;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号