首页> 外文OA文献 >A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance
【2h】

A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance

机译:一种带有监督学习辅助强化学习算法的模糊控制器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fuzzy logic system promises an efficient way for obstacle avoidance. However, it is difficult to maintain the correctness, consistency, and completeness of a fuzzy rule base constructed and tuned by a human expert. Reinforcement learning method is capable of learning the fuzzy rules automatically. However, it incurs heavy learning phase and may result in an insufficiently learned rule base due to the curse of dimensionality. In this paper, we propose a neural fuzzy system with mixed coarse learning and fine learning phases. In the first phase, supervised learning method is used to determine the membership functions for the input and output variables simultaneously. After sufficient training, fine learning is applied which employs reinforcement learning algorithm to fine-tune the membership functions for the output variables. For sufficient learning, a new learning method using modified Sutton and Barto's model is proposed to strengthen the exploration. Through this two-step tuning approach, the mobile robot is able to perform collision-free navigation. To deal with the difficulty in acquiring large amount of training data with high consistency for the supervised learning, we develop a virtual environment (VE) simulator, which is able to provide desktop virtual environment (DVE) and immersive virtual environment (IVE) visualization. Through operating a mobile robot in the virtual environment (DVE/IVE) by a skilled human operator, the training data are readily obtained and used to train the neural fuzzy system.
机译:模糊逻辑系统有望成为一种有效的避障方法。但是,很难维护由人类专家构建和调整的模糊规则库的正确性,一致性和完整性。强化学习方法能够自动学习模糊规则。但是,它会导致繁重的学习阶段,并且可能由于维数的诅咒而导致学习不足的规则库。在本文中,我们提出了一种混合了粗略学习阶段和精细学习阶段的神经模糊系统。在第一阶段,监督学习方法用于同时确定输入和输出变量的隶属函数。经过足够的培训后,将应用精细学习,该学习采用增强学习算法来微调输出变量的隶属函数。为了进行充分的学习,提出了一种使用改进的Sutton和Barto模型的新学习方法,以加强探索。通过这种两步调整方法,移动机器人可以执行无碰撞导航。为了解决在监督学习中获得大量一致性高的训练数据的难题,我们开发了虚拟环境(VE)模拟器,该模拟器能够提供桌面虚拟环境(DVE)和沉浸式虚拟环境(IVE)可视化。通过熟练的操作员在虚拟环境(DVE / IVE)中操作移动机器人,可以轻松获得训练数据并将其用于训练神经模糊系统。

著录项

  • 作者

    Wang D; Ye C; Yung NHC;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号