首页> 外文OA文献 >Multiscale characterization of chronobiological signals based on the discrete wavelet transform
【2h】

Multiscale characterization of chronobiological signals based on the discrete wavelet transform

机译:基于离散小波变换的时间生物信号的多尺度表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To compensate for the deficiency of conventional frequency-domain or time-domain analysis, this paper presents a multiscale approach to characterize the chronobiological time series (CTS) based on a discrete wavelet transform (DWT). We have shown that the local modulus maxima and zero-crossings of the wavelet coefficients at different scales give a complete characterization of rhythmic activities. We further constructed a tree scheme to represent those interacting activities across scales. Using the bandpass filter property of the DWT in the frequency domain, we also characterized the band-related activities by calculating energy in respective rhythmic bands. Moreover, since there is a fast and easily implemented algorithm for the DWT, this new approach may simplify the signal processing and provide a more efficient and complete study of the temporal-frequency dynamics of the CTS. Preliminary results are presented using the proposed method on the locomotion of mice under altered lighting conditions, verifying its competency for CTS analysis. | To compensate for the deficiency of conventional frequency-domain or time-domain analysis, this paper presents a multiscale approach to characterize the chronobiological time series (CTS) based on a discrete wavelet transform (DWT). We have shown that the local modulus maxima and zero-crossings of the wavelet coefficients at different scales give a complete characterization of rhythmic activities. We further constructed a tree scheme to represent those interacting activities across scales. Using the bandpass filter property of the DWT in the frequency domain, we also characterized the band-related activities by calculating energy in respective rhythmic bands. Moreover, since there is a fast and easily implemented algorithm for the DWT, this next approach may simplify the signal processing and provide a more efficient and complete study of the temporal-frequency dynamics of the CTS. Preliminary results are presented using the proposed method on the locomotion of mice under altered lighting conditions, verifying its competency for CTS analysis.
机译:为了弥补传统频域或时域分析的不足,本文提出了一种基于离散小波变换(DWT)的时序生物时间序列(CTS)表征方法。我们已经表明,局部尺度的最大值和小波系数在不同尺度上的零交叉给出了节奏活动的完整表征。我们进一步构建了一个树形图来表示那些跨越尺度的交互活动。利用DWT在频域中的带通滤波器特性,我们还通过计算各个有节奏带中的能量来表征与带相关的活动。此外,由于DWT有一种快速且易于实现的算法,因此这种新方法可以简化信号处理,并提供对CTS时频动态的更有效和完整的研究。使用所提出的方法对改变光照条件下小鼠的运动提出了初步结果,证实了其进行CTS分析的能力。 |为了弥补传统频域或时域分析的不足,本文提出了一种基于离散小波变换(DWT)的时序生物时间序列(CTS)表征方法。我们已经表明,局部尺度的最大值和小波系数在不同尺度上的零交叉给出了节奏活动的完整表征。我们进一步构建了一个树形图来表示那些跨越尺度的交互活动。利用DWT在频域中的带通滤波器特性,我们还通过计算各个有节奏带中的能量来表征与带相关的活动。此外,由于DWT有一种快速且易于实现的算法,因此下一种方法可以简化信号处理,并提供对CTS时频动态的更有效和完整的研究。使用所提出的方法对改变光照条件下小鼠的运动提出了初步结果,证实了其进行CTS分析的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号