首页> 外文OA文献 >Vehicular exhaust gas-to-nanoparticle conversion and concentration distribution in the vehicle wake region
【2h】

Vehicular exhaust gas-to-nanoparticle conversion and concentration distribution in the vehicle wake region

机译:车辆尾气区域中的车辆废气 - 纳米颗粒转化和浓度分布

摘要

In the present study, the interaction effects of different sulfur contents, relative humidities, driving modes and vehicular exhaust tailpipe exit conditions on the three-dimensional exhaust gas-to-nanoparticle conversion and concentration distribution in the wake region of a typical bus-shaped vehicle in urban road microenvironments were comprehensively simulated using large eddy simulation (LES) coupled with the aerosol dynamics and turbulent dispersion model. Time-scale analysis of coagulation, nucleation and turbulent dispersion processes in the near-wake region of the studied vehicle show that the coagulation process is slowest and generally can be neglected. On the other hand, nucleation process is taken place much faster (i.e., nanoseconds) which makes the normal time integration method impractical. A time filtering (averaging) method was developed to tackle the extreme fast nucleation problem. Numerical results show that more than 95% (by number concentration) nanoparticles are generated in the region with temperature of 310-320K. The higher vehicle speed will also decrease the number concentration of nanoparticles. However, lower exhaust gas temperature will produce more nanoparticles. A reduction of sulfur content in diesel fuel from 500 ppm to 50 ppm will decrease the number concentration of nanoparticles more than 1000 times. ©Freund Publishing House Ltd.
机译:在本研究中,不同的硫含量,相对湿度,行驶模式和车辆排气尾气出口条件对典型的客车形状的尾流区域中三维废气-纳米颗粒转化和浓度分布的相互作用影响利用大涡模拟(LES)结合气溶胶动力学和湍流扩散模型,对城市道路微环境中的汽车进行了全面模拟。在所研究的车辆的近苏醒区中的凝结,成核和湍流分散过程的时标分析表明,凝结过程最慢并且通常可以忽略。另一方面,成核过程进行得更快(即,纳秒),这使得常规时间积分方法不可行。开发了一种时间滤波(平均)方法来解决极快的成核问题。数值结果表明,在温度为310-320K的区域中生成了超过95%(按浓度计)的纳米粒子。较高的车速还将降低纳米颗粒的数量浓度。但是,较低的废气温度将产生更多的纳米颗粒。将柴油中的硫含量从500 ppm降低到50 ppm将使纳米颗粒的数量浓度降低1000倍以上。 ©弗伦德出版社有限公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号