首页> 外文OA文献 >Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem
【2h】

Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem

机译:牛顿/剪切稀化多相微系统中的分裂动力学和滴落 - 喷射转变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The breakup dynamics in non-Newtonian multiphase microsystems is associated with a variety of industrial applications such as food production and biomedical engineering. In this study, we numerically and experimentally characterize the dripping-to-jetting transition under various flow conditions in a Newtonian/shear-thinning multiphase microsystem. Our work can help to predict the formation of undesirable satellite droplets, which is one of the challenges in dispensing non-Newtonian fluids. We also demonstrate the variations in breakup dynamics between shear-thinning and Newtonian fluids under the same flow conditions. For shear-thinning fluids, the droplet size increases when the capillary number is smaller than a critical value, while it decreases when the capillary number is beyond the critical value. The variations highlight the importance of rheological effects in flows with a non-Newtonian fluid. The viscosity of shear-thinning fluids significantly affects the control over the droplet size, therefore necessitating the manipulation of the shear rate through adjusting the flow rate and the dimensions of the nozzle. Consequently, the droplet size can be tuned in a controlled manner. Our findings can guide the design of novel microdevices for generating droplets of shear-thinning fluids with a predetermined droplet size. This enhances the ability to fabricate functional particles using an emulsion-templated approach. Moreover, elastic effects are also investigated experimentally using a model shear-thinning fluid that also exhibits elastic behaviors: droplets are increasingly deformed with increasing elasticity of the continuous phase. The overall understanding in the model multiphase microsystem will facilitate the use of a droplet-based approach for non-Newtonian multiphase applications ranging from energy to biomedical sciences.
机译:非牛顿多相微系统中的分解动力学与食品工业和生物医学工程等各种工业应用有关。在这项研究中,我们在数值上和实验上表征了牛顿/剪切稀化多相微系统中各种流动条件下的滴水至喷水过渡。我们的工作可以帮助预测不良卫星滴的形成,这是分配非牛顿流体的挑战之一。我们还证明了在相同流动条件下,变稀稀和牛顿流体之间的破裂动力学变化。对于剪切稀化流体,当毛细管数小于临界值时,液滴尺寸会增加,而当毛细管数超过临界值时,液滴尺寸会减小。这些变化突显了在非牛顿流体流动中流变效应的重要性。稀疏剪切液的粘度显着影响液滴尺寸的控制,因此需要通过调节喷嘴的流量和尺寸来控制剪切速率。因此,可以以受控的方式调节液滴的尺寸。我们的发现可以指导新型微设备的设计,以产生具有预定液滴尺寸的剪切稀化流体液滴。这增强了使用乳液模板化方法制造功能性颗粒的能力。此外,还使用模型剪切稀化流体对弹性效应进行了实验研究,该模型也显示出弹性行为:液滴随着连续相弹性的增加而逐渐变形。对模型多相微系统的总体理解将有助于基于液滴的方法在非牛顿多相应用中的应用,从能源到生物医学。

著录项

  • 作者

    Ren Y; Shum HC; Liu Z;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号