首页> 外文OA文献 >Variational Inference-based Joint Interference Mitigation and OFDM Equalization Under High Mobility
【2h】

Variational Inference-based Joint Interference Mitigation and OFDM Equalization Under High Mobility

机译:高移动性下基于变分推理的联合干扰抑制和OFDm均衡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In OFDM-based spectrum sharing networks, due to inefficient coordination or imperfect spectrum sensing, the signals from femtocells or secondary users appear as interference in a subset of subcarriers of the primary systems. Together with the inter-carrier interference (ICI) introduced by high mobility, equalizing one subcarrier now depends not only on whether interference exists, but also the neighboring subcarrier data. In this letter, we propose a novel approach to iteratively learn the statistics of noise plus interference across different subcarriers, and refine the soft data estimates of each subcarrier based on the variational inference. Simulation results show that the pro- posed method avoids the error floor effect, which is exhibited by existing algorithms without considering interference mitigation, and performs close to the ideal case with perfect ICI cancelation and knowledge of noise plus interference powers for optimal maximum a posteriori probability (MAP) equalizer.
机译:在基于OFDM的频谱共享网络中,由于协调效率低下或频谱检测不完善,来自毫微微小区或辅助用户的信号在主系统的子载波子集中表现为干扰。现在,与高移动性带来的载波间干扰(ICI)一起,均衡一个子载波不仅取决于是否存在干扰,还取决于相邻子载波数据。在这封信中,我们提出了一种新颖的方法来迭代地学习不同子载波之间的噪声和干扰的统计信息,并基于变分推断来优化每个子载波的软数据估计。仿真结果表明,所提出的方法避免了现有算法所表现出的错误底限效应,而没有考虑缓解干扰,并且具有完美的ICI消除和对噪声以及干扰功率的了解,从而接近理想情况,从而获得了最佳的最大后验概率。 (MAP)均衡器。

著录项

  • 作者

    Wu YC; Qin J; Zhou J;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号