首页> 外文OA文献 >Contribution à la modélisation des convertisseurs continu/continu dans une perspective de commande – Influence du filtre d'entrée
【2h】

Contribution à la modélisation des convertisseurs continu/continu dans une perspective de commande – Influence du filtre d'entrée

机译:对国际转型委员会的贡献继续/持续不断发展的观点 - 影响dufiltred'entrée

摘要

Modeling and control of switched-mode dc-dc converters has occupied a center stage in the field of modern power electronics due to their widespread military and industrial applications. Averaged modeling is most commonly applied as an effective tool to analyze dynamic behavior of a converter and to get physical insights into various dynamical phenomena. State-space averaged models are widely accepted in practice mainly because of their simplicity, generality and demonstrated practical utility. Various averaged models have been presented in literature; however, some fundamental questions regarding averaging methodologies still lack satisfactory answers. These unresolved modeling issues are primarily related to their practical validation, inclusion of circuit parasitics and their application to the control-loop design. One of the primary concerns of this thesis is to study and evaluate the performance of averaged modeling of dc-dc converters from control perspective. In particular, the main emphasis is placed on the theoretical and experimental investigation of averaged modeling in discontinuous conduction mode (DCM). Various analytical averaged models of different orders, presented in literature, are reformulated in this thesis by including all appropriate parasitics. Parasitics are introduced to take into account those phenomena which can possibly induce instability. Then, the validities of these averaged models are experimentally examined by comparing analytical results with experimental results measured from a hardware prototype.As far as control is concerned, stability is of prime importance in any dc voltage regulation system. However, closed-loop stability is not guaranteed if a low-pass filter is present at converter-input. The origin of this problem lies in the filter interactions with the negative dynamic resistance behavior of the dc-dc converter input port. Literature provides a gateway to solve this issue and proposes a ?passive? solution to damp the input-filter oscillations. Although exact values of the required damping resistance can be determined using an ideal converter model, this value is not systematically confirmed through experiments. In this thesis small-signal control-to-output transfer functions are used to systematically formulate some design rules to avoid instability. Safe operating regions are identified in terms of damping-circuit parameters and this approach is subsequently extended to the case of cascade converters. Throughout this study the small-signal averaged modeling is used for the stability analysis.Although adding adequate resistance to the filter can solve instability problem, one drawback for which passive damping is commonly criticized is the undesirable power dissipation in the damping resistors. To properly investigate its adverse impact on conversion efficiency, these damping losses are quantified in this thesis. A detailed theoretical power-loss analysis is presented under varying operating conditions followed by its experimental verification. Obtained results are generalized for all fundamental topologies.One of the main themes of this dissertation is the development of a control solution for the stability of dc-dc converter in presence of input filter, hence avoiding the use of dissipative damping. To achieve this objective, this thesis suggests the use of full state-feedback control with pole-placement technique. An augmented state-space averaged model is used to design the controller which combines state-feedback with PI-control loop. First of all a theoretical approach is presented. Then the effectiveness of the proposed control algorithm is demonstrated with simulation studies. It appears that an adequate level of dynamic performance under large perturbations can be achieved by using a varying gain state-feedback. A pseudo large-signal stability analysis is also performed with the help of this technique. Importantly, this control strategy assures stability of the system without using any passive components in the filter circuit and thus avoiding undesirable losses. An alternate control scheme, chosen from the literature, is also discussed for filter-converter system stability. This scheme is based upon sliding-mode control and Lyapunov function approach. Its dynamic performance is compared with that of the full state-feedback controller proposed in this thesis while explaining pros and cons of both control strategies.
机译:开关模式dc-dc转换器的建模和控制由于其广泛的军事和工业应用而在现代电力电子领域占据了中心位置。平均建模最常用作分析转换器动态行为并获得各种动态现象的物理见解的有效工具。状态空间平均模型在实践中被广泛接受,主要是因为它们的简单性,通用性和证明的实用性。文献中提出了各种平均模型。但是,关于平均方法的一些基本问题仍然缺乏令人满意的答案。这些未解决的建模问题主要与它们的实际验证,电路寄生效应及其在控制回路设计中的应用有关。本文的主要关注点之一是从控制角度研究和评估DC-DC转换器的平均建模性能。特别地,主要重点放在不连续传导模式(DCM)中平均建模的理论和实验研究上。通过包含所有适当的寄生虫,本文重新阐述了文献中提出的各种不同阶次的分析平均模型。引入寄生因素是为了考虑可能导致不稳定的现象。然后,通过将分析结果与从硬件原型测得的实验结果进行比较,对这些平均模型的有效性进行了实验检验。就控制而言,在任何直流电压调节系统中,稳定性至关重要。但是,如果转换器输入端存在低通滤波器,则无法保证闭环稳定性。此问题的根源在于滤波器与dc-dc转换器输入端口的负动态电阻行为的相互作用。文献为解决这一问题提供了途径,并提出了“被动”的建议。解决方案,以抑制输入滤波器的振荡。尽管可以使用理想的转换器模型确定所需的阻尼电阻的确切值,但是该值并未通过实验得到系统地确认。本文采用小信号控制到输出的传递函数来系统地制定一些设计规则,以避免不稳定。根据阻尼电路参数确定安全的工作区域,然后将该方法扩展到级联转换器的情况。在整个研究中,均使用小信号平均模型进行稳定性分析。尽管在滤波器中添加足够的电阻可以解决不稳定性问题,但通常被批评为无源阻尼的一个缺点是阻尼电阻中的不良功耗。为了正确研究其对转换效率的不利影响,本文对这些阻尼损耗进行了量化。给出了在不同工作条件下的详细理论功率损耗分析,然后进行了实验验证。本文对所有基本拓扑进行了总结。本文的主要主题之一是为存在输入滤波器的DC-DC转换器的稳定性提供一种控制解决方案,从而避免了使用耗散阻尼。为了达到这个目的,本论文建议采用全状态反馈控制和极点配置技术。使用增强的状态空间平均模型来设计结合了状态反馈和PI控制回路的控制器。首先提出一种理论方法。然后通过仿真研究证明了该控制算法的有效性。看起来,通过使用变化的增益状态反馈,可以在大扰动下获得足够水平的动态性能。借助该技术还可以进行伪大信号稳定性分析。重要的是,这种控制策略可确保系统的稳定性,而无需在滤波电路中使用任何无源组件,从而避免了不希望的损耗。还讨论了从文献中选择的另一种控制方案,以提高滤波器-转换器系统的稳定性。该方案基于滑模控制和Lyapunov函数方法。在说明两种控制策略的优缺点的同时,将其动态性能与本文提出的全状态反馈控制器的动态性能进行了比较。

著录项

  • 作者

    Usman Iftikhar Muhammad;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号