首页> 外文OA文献 >Dynamics of information exchange in endogenous social networks
【2h】

Dynamics of information exchange in endogenous social networks

机译:内生社交网络中的信息交换动态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We develop a model of information exchange through communication and investigate its implications for information aggregation in large societies. An extit{underlying state} determines payoffs from different actions. Agents decide which others to form a costly extit{communication link} with, incurring the associated cost. After receiving a extit{private signal} correlated with the underlying state, they exchange information over the induced extit{communication network} until taking an (irreversible) action. We define extit{asymptotic learning} as the fraction of agents taking the correct action converging to one as a society grows large. Under truthful communication, we show that asymptotic learning occurs if (and under some additional conditions, also only if) in the induced communication network most agents are a short distance away from ``information hubs'', which receive and distribute a large amount of information. Asymptotic learning therefore requires information to be aggregated in the hands of a few agents. We also show that while truthful communication may not always be a best response, it is an equilibrium when the communication network induces asymptotic learning. Moreover, we contrast equilibrium behavior with a socially optimal strategy profile, i.e., a profile that maximizes aggregate welfare. We show that when the network induces asymptotic learning, equilibrium behavior leads to maximum aggregate welfare, but this may not be the case when asymptotic learning does not occur. We then provide a systematic investigation of what types of cost structures and associated social cliques (consisting of groups of individuals linked to each other at zero cost, such as friendship networks) ensure the emergence of communication networks that lead to asymptotic learning. Our result shows that societies with too many and sufficiently large social cliques do not induce asymptotic learning, because each social clique would have sufficient information by itself, making communication with others relatively unattractive. Asymptotic learning results either if social cliques are not too large, in which case communication across cliques is encouraged, or if there exist very large cliques that act as information hubs.
机译:我们开发了一种通过交流进行信息交换的模型,并研究了其在大型社会中对信息聚合的影响。 textit {底层状态}确定来自不同操作的收益。代理商决定与哪些人形成昂贵的 textit {通信链接},从而产生相关费用。在接收到与基础状态相关的 textit {private signal}之后,它们通过诱导的 textit {通信网络}交换信息,直到采取(不可逆的)动作为止。我们将 textit {渐近式学习}定义为随着社会的成长,采取正确行动逐渐收敛为行动的行动者所占的比例。在真实通信下,我们表明,如果(在某些附加条件下,也仅当)在感应通信网络中,大多数主体与``信息中心''相距很短距离,就会出现渐进学习,``信息中心''接收并分配大量的信息。信息。因此,渐近学习要求将信息汇总到少数代理手中。我们还表明,尽管真实的交流不一定总是最好的回应,但当交流网络诱发渐进学习时,它是一种平衡。此外,我们将均衡行为与社会最优策略配置文件(即使总福利最大化的配置文件)进行对比。我们表明,当网络诱导渐进学习时,平衡行为会导致最大的总体福利,但是当不发生渐进学习时,情况可能并非如此。然后,我们对哪些类型的成本结构和相关的社会派系(由零成本彼此链接的个人组成,例如友谊网络)进行了系统的调查,以确保出现导致渐进学习的通信网络。我们的结果表明,社会派别过多且足够庞大的社会不会引发渐进学习,因为每个社会派别本身都会拥有足够的信息,因此与他人的交流相对没有吸引力。如果社会派别不是太大(在这种情况下,鼓励派别之间的交流),或者如果存在很大的派系充当信息中心,则会出现渐近学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号