首页> 外文OA文献 >The influence of additive outliers on the performance of information criteria to detect nonlinearity
【2h】

The influence of additive outliers on the performance of information criteria to detect nonlinearity

机译:加性异常值对检测非线性信息准则性能的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper the performance of information criteria and a test against SETAR nonlinearity for outlier contaminated time series are investigated. Additive outliers can seriously influence the properties of the underlying time series and hence of linearity tests, resulting in spurious test decisions of nonlinearity. Using simulation studies, the performance of the information criteria SIC and WIC as an alternative to linearity tests are assessed in time series with different degrees of persistence and different outlier magnitudes. For uncontaminated series and a small sample size the performance of SIC and WIC is similar to the performance of the linearity test at the 5% and 10% significance level, respectively. For an increasing number of observations the size of SIC and WIC tends to zero. In contaminated series the size of the test and of the information criteria increases with the outlier magnitude and the degree of persistence. SIC and WIC clearly outperform the test in larger samples and larger outlier magnitudes. The power of the test and of the information criteria depends on the sample size and on the difference between the regimes. The more distinct the regimes and the larger the sample, the higher is the power. Additive outliers decrease the power in distinct regimes in small samples and in intermediate regimes in large samples, but increase the power in similar regimes. Due to their higher robustness in terms of size, information criteria are a valuable alternative to linearity tests in outlier contaminated time series.
机译:本文研究了信息准则的性能以及针对离群污染时间序列的SETAR非线性测试。可加的离群值会严重影响基础时间序列的属性,进而影响线性测试的结果,从而导致非线性的虚假测试决策。使用模拟研究,以不同的持续程度和不同的异常值按时间序列评估信息标准SIC和WIC替代线性测试的性能。对于未受污染的系列和小样本量,SIC和WIC的性能分别类似于显着性水平为5%和10%的线性测试。对于越来越多的观察,SIC和WIC的大小趋于零。在受污染的系列中,测试的大小和信息标准的大小随异常值和持续程度的增加而增加。对于较大的样本和较大的异常值,SIC和WIC明显优于测试。测试的能力和信息标准取决于样本量以及不同方案之间的差异。方案越独特,样本越大,功效就越高。加性离群值在小样本中的不同方案中减小了幂,在大样本中的中型方案减小了幂,但在相似方案中增加了幂。由于它们在大小方面具有更高的鲁棒性,因此信息标准是异常值受污染的时间序列中线性测试的一种有价值的替代方法。

著录项

  • 作者

    Rinke Saskia;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号