首页> 外文OA文献 >Bayesian forecasts combination to improve the Romanian inflation predictions based on econometric models
【2h】

Bayesian forecasts combination to improve the Romanian inflation predictions based on econometric models

机译:贝叶斯预测基于计量经济学模型的组合可以改善罗马尼亚的通货膨胀预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There are many types of econometric models used in predicting the inflation rate, but in this study we used a Bayesian shrinkage combination approach. This methodology is used in order to improve the predictions accuracy by including information that is not captured by the econometric models. Therefore, experts' forecasts are utilized as prior information, for Romania these predictions being provided by Institute for Economic Forecasting (Dobrescu macromodel), National Commission for Prognosis and European Commission. The empirical results for Romanian inflation show the superiority of a fixed effects model compared to other types of econometric models like VAR, Bayesian VAR, simultaneous equations model, dynamic model, log-linear model. The Bayesian combinations that used experts' predictions as priors, when the shrinkage parameter tends to infinite, improved the accuracy of all forecasts based on individual models, outperforming also zero and equal weights predictions and nauefve forecasts.
机译:有多种类型的计量经济学模型可用于预测通货膨胀率,但在本研究中,我们使用了贝叶斯收缩组合方法。使用此方法是为了通过包含计量经济学模型未捕获的信息来提高预测准确性。因此,专家的预测被用作先验信息,对于罗马尼亚,这些预测由经济预测研究所(Dobrescu宏模型),国家预后委员会和欧洲委员会提供。罗马尼亚通货膨胀的经验结果表明,与其他类型的计量经济学模型(如​​VAR,贝叶斯VAR,联立方程模型,动态模型,对数线性模型)相比,固定效应模型具有优越性。当收缩参数趋于无限时,使用专家预测作为先验的贝叶斯组合提高了基于单个模型的所有预测的准确性,也优于零权重和等权重预测以及幼稚的预测。

著录项

  • 作者

    Simionescu Mihaela;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号