首页> 外文OA文献 >TVICA - time varying independent component analysis and its application to financial data
【2h】

TVICA - time varying independent component analysis and its application to financial data

机译:TVICa - 时变独立分量分析及其在财务数据中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Source extraction and dimensionality reduction are important in analyzing high dimensional and complex financial time series that are neither Gaussian distributed nor stationary. Independent component analysis (ICA) method can be used to factorize the data into a linear combination of independent components, so that the high dimensional problem is converted to a set of univariate ones. However conventional ICA methods implicitly assume stationarity or stochastic homogeneity of the analyzed time series, which leads to a low accuracy of estimation in case of a changing stochastic structure. A time varying ICA (TVICA) is proposed here. The key idea is to allow the ICA filter to change over time, and to estimate it in so-called local homogeneous intervals. The question of how to identify these intervals is solved by the LCP (local change point) method. Compared to a static ICA, the dynamic TVICA provides good performance both in simulation and real data analysis. The data example is concerned with independent signal processing and deals with a portfolio of highly traded stocks.
机译:数据源提取和降维对于分析既非高斯分布也不平稳的高维和复杂的财务时间序列非常重要。可以使用独立成分分析(ICA)方法将数据分解为独立成分的线性组合,以便将高维问题转换为一组单变量问题。但是,传统的ICA方法隐含地假设了所分析时间序列的平稳性或随机同质性,这在随机结构发生变化的情况下导致估算的准确性较低。这里提出了时变ICA(TVICA)。关键思想是允许ICA滤波器随时间变化,并以所谓的局部均匀间隔对其进行估计。如何识别这些间隔的问题已通过LCP(本地更改点)方法解决。与静态ICA相比,动态TVICA在仿真和真实数据分析方面均具有良好的性能。数据示例涉及独立的信号处理,并处理高交易量股票的投资组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号