首页> 外文OA文献 >Using Lasso-Type Penalties to Model Time-Varying Covariate Effects in Panel Data Regressions: A Novel Approach Illustrated by the u91Death of Distanceu92 in International Trade
【2h】

Using Lasso-Type Penalties to Model Time-Varying Covariate Effects in Panel Data Regressions: A Novel Approach Illustrated by the u91Death of Distanceu92 in International Trade

机译:使用套索类型惩罚来模拟面板数据回归中的时变协变量效应:一种新的方法,由国际贸易中的距离 u92解释

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When analyzing panel data using regression models, it is often reasonable to allow for time-varying covariate effects. We propose a novel approach to modelling timevarying coefficients in panel data regressions, which is based on penalized regression techniques. To illustrate the usefulness of this approach, we revisit the well-known empirical puzzle of the u91death of distanceu92 in international trade. We find significant differences between results obtained with the proposed estimator and those obtained with u91traditionalu92 methods. The proposed method can also be used for model selection, and to allow covariate effects to vary over other dimensions than time.
机译:在使用回归模型分析面板数据时,通常可以考虑随时间变化的协变量效应。我们提出了一种新颖的方法来建模面板数据回归中的时变系数,该方法基于惩罚回归技术。为了说明这种方法的有用性,我们重新审视了国际贸易中“距离死亡”的众所周知的经验难题。我们发现,使用建议的估算器获得的结果与使用 u91traditional u92方法获得的结果之间存在显着差异。所提出的方法还可以用于模型选择,并允许协变量效应在时间以外的其他维度上变化。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号