首页> 外文OA文献 >Inference for best linear approximations to set identified functions
【2h】

Inference for best linear approximations to set identified functions

机译:推断最佳线性近似以设置已识别的函数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper provides inference methods for best linear approximations to functions which are known to lie within a band. It extends the partial identification literature by allowing the upper and lower functions defining the band to be any functions, including ones carrying an index, which can be estimated parametrically or non-parametrically. The identification region of the parameters of the best linear approximation is characterized via its support function, and limit theory is developed for the latter. We prove that the support function approximately converges to a Gaussian process, and validity of the Bayesian bootstrap is established. The paper nests as special cases the canonical examples in the literature: mean regression with interval valued outcome data and interval valued regressor data. Because the bounds may carry an index, the paper covers problems beyond mean regression; the framework is extremely versatile. Applications include quantile and distribution regression with interval valued data, sample selection problems, as well as mean, quantile, and distribution treatment effects. Moreover, the framework can account for the availability of instruments. An application is carried out, studying female labor force participation along the lines of Mulligan and Rubinstein (2008).
机译:本文提供了对函数的最佳线性近似的推断方法,这些函数已知在一个带内。它通过允许将定义频段的上,下功能设为任何功能(包括带有索引的功能)来扩展部分识别文献,这些功能可以通过参数或非参数方式进行估算。最佳线性逼近参数的识别区域通过其支持函数进行表征,并为后者开发了极限理论。我们证明了支持函数近似收敛于高斯过程,并建立了贝叶斯自举的有效性。作为特殊情况,本文套用了文献中的典型示例:具有区间值结果数据和区间值回归数据的均值回归。由于界限可能带有索引,因此本文涵盖了均值回归以外的问题;该框架非常灵活。应用包括使用间隔值数据进行分位数和分布回归,样本选择问题以及均值,分位数和分布处理效果。此外,该框架可以说明工具的可用性。进行了一项研究,按照Mulligan和Rubinstein(2008)的方法研究了女性劳动力的参与。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号