首页> 外文OA文献 >The measurement error problem in dynamic panel data analysis: Modeling and GMM estimation
【2h】

The measurement error problem in dynamic panel data analysis: Modeling and GMM estimation

机译:动态面板数据分析中的测量误差问题:建模和Gmm估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Generalized Method of Moments (GMM) is discussed for handling the joint occurrence of fixed effects and random measurement errors in an autoregressive panel data model. Finite memory of disturbances, latent regressors and measurement errors is assumed. Two specializations of GMM are considered: (i) using instruments (IVs) in levels for a differenced version of the equation, (ii) using IVs in differences for an equation in levels. Index sets for lags and lags are convenient in examining how the potential IV set, satisfying orthogonality and rank conditions, changes when the memory pattern changes. The joint occurrence of measurement errors with long memory may sometimes give an IV-set too small to make estimation possible. On the other hand, problems of 'IV proliferation' and 'weak IVs' may arise unless the time-series length is small. An application based on data for (log-transformed) capital stock and output from Norwegian manufacturing firms is discussed. Finite sample biases and IV quality are illustrated by Monte Carlo simulations. Overall, with respect to bias and IV strength, GMM inference using the level version of the equation seems superior to inference based on the equation in differences.
机译:讨论了通用矩量法(GMM),用于处理自回归面板数据模型中固定效应和随机测量误差的联合发生。假定对干扰,潜在回归和测量误差有有限的记忆。考虑了GMM的两个专业化:(i)在级别上使用工具(IVs)来计算方程的差分版本;(ii)在级别上使用IVs来求方程的差分。滞后和滞后的索引集可方便地检查当存储器模式更改时满足正交性和秩条件的潜在IV集如何更改。长时间记忆导致的测量误差的共同出现有时会使IV设置过小而无法进行估计。另一方面,除非时间序列长度短,否则可能会出现“ IV扩散”和“ IV弱”的问题。讨论了基于(对数转换的)资本存量和挪威制造公司的产出数据的应用程序。蒙特卡洛仿真说明了有限的样品偏差和IV质量。总体而言,关于偏差和IV强度,使用等式的水平版本的GMM推理似乎优于根据差异的等式进行的推理。

著录项

  • 作者

    Biuf8rn Erik;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号