首页> 外文OA文献 >Empirical likelihood estimators for the error distribution in nonparametric regression models
【2h】

Empirical likelihood estimators for the error distribution in nonparametric regression models

机译:非参数回归模型中误差分布的经验似然估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of this paper is to show that existing estimators for the error distribution in nonparametric regression models can be improved when additional information about the distribution is included by the empirical likelihood method. The weak convergence of the resulting new estimator to a Gaussian process is shown and the performance is investigated by comparison of asymptotic mean squared errors and by means of a simulation study. As a by-product of our proofs we obtain stochastic expansions for smooth linear estimators based on residuals from the nonparametric regression model.
机译:本文的目的是表明,当经验似然方法包括有关分布的其他信息时,可以改进非参数回归模型中误差分布的现有估计量。给出了所得新估计量到高斯过程的弱收敛性,并通过比较渐进均方误差和仿真研究来研究性能。作为我们证明的副产品,我们基于非参数回归模型的残差获得平滑线性估计量的随机展开。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号