首页> 外文OA文献 >Stochastic User Equilibrium Traffic Assignment with Price-sensitive Demand: Do Methods matter (much)?
【2h】

Stochastic User Equilibrium Traffic Assignment with Price-sensitive Demand: Do Methods matter (much)?

机译:具有价格敏感性需求的随机用户均衡交通分配:方法是否重要(多)?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We compare three stochastic user equilibrium traffic assignment models multinomial probit, nested logit, and generalized nested logit), using a congestible transport network. We test the models in two situations: one in which they have theoretically equivalent coefficients, and one in which they are calibrated to have similar traffic flows. In each case, we examine the differences in traffic flows between the SUE models, and use them to evaluate policy decisions, such as profit-maximizing tolling or second-best socially optimal tolling. We then investigate how the optimal tolls, and their performance, depend on the model choice, and hence, how important the differences between models are. We show that the differences between models are small, as a result of the congestibility of the network, and that a better calibration does not always lead to better traffic flow predictions. As the outcomes are so similar, it may be better to use computationally more efficient logit models instead of probit models, in at least some applications, even if the latter is preferable from a conceptual viewpoint.
机译:我们使用拥塞的运输网络比较了三种随机用户均衡流量分配模型(多项式概率,嵌套logit和广义嵌套logit)。我们在两种情况下测试模型:一种模型在理论上具有相等的系数,另一种模型经过校准以具有相似的流量。在每种情况下,我们都会检查SUE模型之间流量的差异,并使用它们来评估政策决策,例如利润最大化的收费或社会最优收费的第二好的收费。然后,我们调查最优通行费及其性能如何取决于模型选择,以及模型之间的差异有多重要。我们显示,由于网络拥塞,模型之间的差异很小,而且更好的校准并不总是能带来更好的交通流量预测。由于结果是如此相似,因此至少在某些应用程序中,最好使用计算效率更高的logit模型代替probit模型,即使从概念上看后者更可取。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号