首页> 外文OA文献 >Analyzing imputed financial data: a new approach to cluster analysis
【2h】

Analyzing imputed financial data: a new approach to cluster analysis

机译:分析推算的财务数据:一种新的聚类分析方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The authors introduce a novel statistical modeling technique to cluster analysis and apply it to financial data. Their two main goals are to handle missing data and to find homogeneous groups within the data. Their approach is flexible and handles large and complex data structures with missing observations and with quantitative and qualitative measurements. The authors achieve this result by mapping the data to a new structure that is free of distributional assumptions in choosing homogeneous groups of observations. Their new method also provides insight into the number of different categories needed for classifying the data. The authors use this approach to partition a matched sample of stocks. One group offers dividend reinvestment plans, and the other does not. Their method partitions this sample with almost 97 percent accuracy even when using only easily available financial variables. One interpretation of their result is that the misclassified companies are the best candidates either to adopt a dividend reinvestment plan (if they have none) or to abandon one (if they currently offer one). The authors offer other suggestions for applications in the field of finance.
机译:作者介绍了一种新颖的统计建模技术来进行聚类分析并将其应用于财务数据。他们的两个主要目标是处理丢失的数据并在数据中找到同类的组。他们的方法很灵活,可以处理缺少观察值以及定量和定性测量的大型和复杂数据结构。作者通过将数据映射到一个新的结构来实现此结果,该结构在选择同类观测组时没有分布假设。他们的新方法还可以洞悉分类数据所需的不同类别的数量。作者使用这种方法对匹配的股票样本进行划分。一组提供股息再投资计划,另一组则不提供。即使仅使用容易获得的财务变量,他们的方法也以几乎97%的准确性对样本进行划分。对其结果的一种解释是,分类错误的公司是采用股息再投资计划(如果没有)或放弃一项(如果他们目前提供一种)的最佳人选。作者为在金融领域的应用提供了其他建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号