首页> 外文OA文献 >Forecasting Realised Volatility using a Long Memory Stochastic Volatility Model: Estimation, Prediction and Seasonal Adjustment
【2h】

Forecasting Realised Volatility using a Long Memory Stochastic Volatility Model: Estimation, Prediction and Seasonal Adjustment

机译:使用长记忆随机波动率模型预测实现的波动率:估计,预测和季节调整

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the modelling of large data sets of high frequency returns using a long memory stochastic volatility (LMSV) model. Issues pertaining to estimation and forecasting of datasets using the LMSV model are studied in detail. Furthermore, a new method of de-seasonalising the volatility in high frequency data is proposed, that allows for slowly varying seasonality. Using both simulated as well as real data, we compare the forecasting performance of the LMSV model for forecasting realised volatility to that of a linear long memory model fit to the log realised volatility. The performance of the new seasonal adjustment is also compared to a recently proposed procedure using real data.
机译:我们研究了使用长记忆随机波动率(LMSV)模型的高频收益的大型数据集的建模。详细研究了与使用LMSV模型进行数据集的估计和预测有关的问题。此外,提出了一种对高频数据中的波动率进行反季节分解的新方法,该方法允许季节性变化缓慢。通过使用模拟数据和实际数据,我们将用于预测已实现波动率的LMSV模型的预测性能与适合于对数已实现波动率的线性长记忆模型的性能进行了比较。新的季节调整的效果也与最近使用实际数据提出的程序进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号