首页> 外文OA文献 >On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings
【2h】

On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings

机译:超高温地壳变质作用:相平衡,微量元素测温,体积成分,热源,时间尺度和构造背景

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ultrahigh temperature (UHT) metamorphism is the most thermally extreme form of regional crustal metamorphism, with temperatures exceeding 900 ⁰C. UHT crustal metamorphism is recognised in more than 50 localities globally in the metamorphic rock record and is accepted as ‘normal’ in the spectrum of regional crustal processes. UHT metamorphism is typically identified on the basis of diagnostic mineral assemblages such as sapphirine þ quartz, orthopyroxene þ sillimanite + quartz and osumilite in MgeAlrich rock compositions, now usually coupled with pseudosection-based thermobarometry using internally-consistent thermodynamic data sets and/or Al-in-Orthopyroxene and ternary feldspar thermobarometry. Significant progress in the understanding of regional UHT metamorphism in recent years includes: (1) development of a ferric iron activitye composition thermodynamic model for sapphirine, allowing phase diagram calculations for oxidised rock compositions; (2) quantification of UHT conditions via trace element thermometry, with Zr-in-rutile more commonly recording higher temperatures than Ti-in-zircon. Rutile is likely to be stable at peak UHT conditions whereas zircon may only grow as UHT rocks are cooling. In addition, the extent to which Zr diffuses out of rutile is controlled by chemical communication with zircon; (3) more fully recognising and utilising temperature-dependent thermal properties of the crust, and the possible range of heat sources causing metamorphism in geodynamic modelling studies; (4) recognising that crust partially melted either in a previous event or earlier in a long-duration event has greater capacity than fertile, unmelted crust to achieve UHT conditions due to the heat energy consumed by partial melting reactions; (5) more strongly linking UePb geochronological data from zircon and monazite to PeT points or path segments through using Y þ REE partitioning between accessory and major phases, as well as phase diagrams incorporating Zr and REE; and (6) improved insight into the settings and factors responsible for UHT metamorphism via geodynamic forward models. These models suggest that regional UHT metamorphism is, principally, geodynamically related to subduction, coupled with elevated crustal radiogenic heat generation rates.
机译:超高温(UHT)变质是区域地壳变质的最极端热形式,温度超过900℃。 UHT地壳变质作用在变质岩记录中已在全球50多个地区得到认可,在区域地壳过程中被视为“正常”。 UHT变质通常是根据MgeAlrich岩石成分中的诊断性矿物组合(例如蓝宝石þ石英,邻辉石þ硅线石+石英和ososlite)识别的,现在通常结合使用基于假剖面的热压法,使用内部一致的热力学数据集和/或Al-间邻苯二甲醚和三元长石热压法。近年来,对UHT区域变质认识的重要进展包括:(1)建立蓝宝石的铁活度成分热力学模型,从而可以计算氧化岩成分的相图; (2)通过微量元素测温法对UHT条件进行定量,其中金红石型锆石记录的温度高于锆石中的钛。金红石可能在UHT峰值条件下保持稳定,而锆石可能仅在UHT岩石冷却时才生长。另外,Zr从金红石中扩散出来的程度由与锆石的化学连通控制。 (3)在地球动力学建模研究中更充分地认识和利用地壳的温度相关热特性以及引起变质的可能热源范围; (4)认识到由于部分熔融反应消耗的热能,在前一个事件中或在长期事件中较早发生部分熔化的地壳的能力要高于未熔化的可熔结壳的超高温条件; (5)通过在辅助相和主要相之间使用YþREE划分,以及结合Zr和REE的相图,更牢固地将锆石和独居石的UePb年代学数据链接到PeT点或路径段。 (6)通过地球动力学正演模型更好地了解了造成UHT变质的环境和因素。这些模型表明,区域性UHT变质作用主要是与俯冲作用在地球动力学上相关,并伴随着地壳放射性热生成速率的提高。

著录项

  • 作者

    Kelsey D.E.; Hand M.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号