首页> 外文OA文献 >Mode-seeking on hypergraphs for robust geometric model fitting
【2h】

Mode-seeking on hypergraphs for robust geometric model fitting

机译:超图的模式搜索用于鲁棒几何模型拟合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a novel geometric model fitting method, called Mode-Seeking on Hypergraphs (MSH), to deal with multi-structure data even in the presence of severe outliers. The proposed method formulates geometric model fitting as a mode seeking problem on a hypergraph in which vertices represent model hypotheses and hyperedges denote data points. MSH intuitively detects model instances by a simple and effective mode seeking algorithm. In addition to the mode seeking algorithm, MSH includes a similarity measure between vertices on the hypergraph and a “weight-aware sampling” technique. The proposed method not only alleviates sensitivity to the data distribution, but also is scalable to large scale problems. Experimental results further demonstrate that the proposed method has significant superiority over the state-of-the-art fitting methods on both synthetic data and real images.
机译:在本文中,我们提出了一种新颖的几何模型拟合方法,称为“超图上的模式寻求(MSH)”,即使在存在严重异常值时也可以处理多结构数据。所提出的方法将几何模型拟合公式化为超图上的模式寻找问题,其中顶点表示模型假设,而超边表示数据点。 MSH通过简单有效的模式搜索算法直观地检测模型实例。除了模式搜索算法,MSH还包括超图上顶点之间的相似性度量和“权重采样”技术。所提出的方法不仅减轻了对数据分布的敏感性,而且可扩展到大规模问题。实验结果进一步表明,该方法在合成数据和真实图像方面都比最新的拟合方法具有明显优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号