首页> 外文OA文献 >Estimation of Spatially Distributed Processes Using Mobile Spatially Distributed Sensor Network
【2h】

Estimation of Spatially Distributed Processes Using Mobile Spatially Distributed Sensor Network

机译:利用移动空间分布式传感器网络估计空间分布过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The problem of estimating a spatially distributed process described by a partial differential equation (PDE), whose observations are contaminated by a zero mean Gaussian noise, is considered in this work. The basic premise of this work is that a set of mobile sensors achieve better estimation performance than a set of immobile sensors. To enhance the performance of the state estimator, a network of sensors that are capable of moving within the spatial domain is utilized. Specifically, such an estimation process is achieved by using a set of spatially distributed mobile sensors. The objective is to provide mobile sensor control policies that aim to improve the state estimate. The metric for such an estimate improvement is taken to be the expected state estimation error. Using different spatial norms, two guidance policies are proposed. The current approach capitalizes on the efficient filter gain design in order to avoid intense computational requirements resulting from the solution to filter Riccati equations. Simulation studies implementing and comparing the two proposed control policies are provided.
机译:在这项工作中,考虑了估计由偏微分方程(PDE)描述的空间分布过程的问题,该偏微分方程的观测结果受到零均值高斯噪声的污染。这项工作的基本前提是,一组移动传感器比一组固定传感器获得更好的估计性能。为了增强状态估计器的性能,利用了能够在空间域内移动的传感器网络。具体地,通过使用一组空间分布的移动传感器来实现这种估计过程。目的是提供旨在改善状态估计的移动传感器控制策略。用于这种估计改进的度量被认为是预期状态估计误差。使用不同的空间规范,提出了两种指导政策。当前的方法利用有效的滤波器增益设计来避免由于滤波器Riccati方程的解而导致的大量计算要求。提供了执行和比较两个建议的控制策略的仿真研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号