首页> 外文OA文献 >ORCHIDEE-STICS, a process-based model of sugarcane biomass production: calibration of model parameters governing phenology
【2h】

ORCHIDEE-STICS, a process-based model of sugarcane biomass production: calibration of model parameters governing phenology

机译:ORCHIDEE-STICS,基于过程的甘蔗生物质生产模型:标定物候的模型参数的校准

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Agro-Land Surface Models (agro-LSM) combine detailed crop models and large-scale vegetation models (DGVMs) to model the spatial and temporal distribution of energy, water, and carbon fluxes within the soil-vegetation-atmosphere continuum worldwide. In this study, we identify and optimize parameters controlling leaf area index (LAI) in the agro-LSM ORCHIDEE-STICS developed for sugarcane. Using the Morris method to identify the key parameters impacting LAI, at eight different sugarcane field trial sites, in Australia and La Reunion island, we determined that the three most important parameters for simulating LAI are (i) the maximum predefined rate of LAI increase during the early crop development phase, a parameter that defines a plant density threshold below which individual plants do not compete for growing their LAI, and a parameter defining a threshold for nitrogen stress on LAI. A multisite calibration of these three parameters is performed using three different scoring functions. The impact of the choice of a particular scoring function on the optimized parameter values is investigated by testing scoring functions defined from the model-data RMSE, the figure of merit and a Bayesian quadratic model-data misfit function. The robustness of the calibration is evaluated for each of the three scoring functions with a systematic cross-validation method to find the most satisfactory one. Our results show that the figure of merit scoring function is the most robust metric for establishing the best parameter values controlling the LAI. The multisite average figure of merit scoring function is improved from 67% of agreement to 79%. The residual error in LAI simulation after the calibration is discussed.
机译:农业土地表面模型(agro-LSM)结合了详细的作物模型和大规模植被模型(DGVM),以模拟全球土壤-植被-大气连续体中能量,水和碳通量的时空分布。在这项研究中,我们确定并优化了为甘蔗开发的agro-LSM ORCHIDEE-STICS中控制叶面积指数(LAI)的参数。在澳大利亚和拉留尼汪岛的八个不同的甘蔗田间试验地点,使用莫里斯方法确定影响LAI的关键参数,我们确定了用于模拟LAI的三个最重要的参数是:在作物的早期发育阶段,该参数定义了植物密度阈值,低于该阈值则各个植物都无法竞争其LAI的竞争,而该参数则定义了LAI上的氮胁迫阈值。使用三个不同的评分功能对这三个参数进行多站点校准。通过测试从模型数据RMSE,优值和贝叶斯二次模型数据失配函数定义的得分函数,研究了选择特定得分函数对优化参数值的影响。使用系统的交叉验证方法为三个评分功能中的每一个评估校准的鲁棒性,以找到最令人满意的一种。我们的结果表明,品质因数评分函数是建立用于控制LAI的最佳参数值的最鲁棒的指标。多站点平均绩效指标评分功能从协议的67%提高到79%。讨论了校准后LAI仿真中的残留误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号