首页> 外文OA文献 >Towards the domain agnostic generation of natural language explanations from provenance graphs for casual users
【2h】

Towards the domain agnostic generation of natural language explanations from provenance graphs for casual users

机译:从临时用户的起源图表向域不可知的自然语言解释生成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As more systems become PROV-enabled, there will be a cor- responding increase in the need to communicate provenance data directly to users. Whilst there are a number of existing methods for doing this — formally, diagrammatically, and textually — there are currently no application-generic techniques for generating linguistic explanations of provenance. The principal reason for this is that a certain amount of linguistic information is required to transform a provenance graph — such as in PROV — into a textual explanation, and if this information is not available as an annotation, this transformation is presently not possible. In this paper, we describe how we have adapted the common ‘consensus’ architecture from the field of natural language generation to achieve this graph transformation, resulting in the novel PROVglish architecture. We then present an approach to garnering the necessary linguistic information from a PROV dataset, which involves exploiting the linguistic information informally encoded in the URIs denoting provenance resources. We finish by detailing an evaluation undertaken to assess the effectiveness of this approach to lexicalisation, demonstrating a significant improvement in terms of fluency, comprehensibility, and grammatical correctness.
机译:随着越来越多的系统启用PROV,直接将出处数据传递给用户的需求也会相应增加。尽管有许多现有的方法(形式上,图形上和文本上)用于执行此操作,但目前尚无用于生成来源的语言解释的通用应用程序技术。这样做的主要原因是,需要一定数量的语言信息才能将出处图(例如在PROV中)转换为文字说明,并且如果此信息不能用作注释,则目前无法进行这种转换。在本文中,我们描述了我们如何适应自然语言生成领域的通用“共识”体系结构以实现这种图形转换,从而产生了新颖的PROVglish体系结构。然后,我们提出一种从PROV数据集中获取必要语言信息的方法,该方法涉及利用URI中非正式编码的表示来源资源的语言信息。最后,我们将详细介绍为评估这种词汇化方法的有效性而进行的评估,以显示其在流利性,可理解性和语法正确性方面的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号