首页> 外文OA文献 >A sequential majorization method for approximating weighted time series of finite rank
【2h】

A sequential majorization method for approximating weighted time series of finite rank

机译:一种近似有限秩加权时间序列的序贯归化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The low-rank Hankel matrix optimization has become one of the main approaches to the signal extraction from noisy time series of finite rank. The approach is particularly effective if different weights are enforced to the data points to reflect their relative importance. Two guiding principles for developing such an approach are (i) the Hankel matrix optimization should be computationally tractable, and (ii) the objective in the optimization should be a close approximation to the original weighted least-squares. In this paper, we introduce a sequential approximation that satisfies (i) and (ii) based on the technique of majorization. A new approximation is constructed as soon as a new iterate is computed from the previous approximation and it makes use of the latest gradient information of the objective, leading to more accurate an approximation to the objective.The resulting sub problem bears a similar structure to an existing scheme and hence can be efficiently solved.Convergence of the sequential majorization method (\texttt{SMM}) is guaranteed provided that the solution of the sub problem satisfies a sandwich inequality.We also compare \texttt{SMM} with two leading methods in literature on real-life problems.Significant improvement is observed in some cases.
机译:低秩汉克尔矩阵优化已成为从有限秩的嘈杂时间序列中提取信号的主要方法之一。如果对数据点施加不同的权重以反映其相对重要性,则该方法特别有效。开发此方法的两个指导原则是:(i)Hankel矩阵优化应在计算上易于处理,并且(ii)优化的目标应与原始加权最小二乘法非常接近。在本文中,我们介绍了一种基于主化技术的满足(i)和(ii)的顺序逼近。根据先前的近似值计算出新的迭代后,便会立即构造一个新的近似值,并利用物镜的最新梯度信息,从而更精确地近似物镜。由此产生的子问题具有与如果子问题的解决方案满足三明治不等式,则可以保证顺序主要化方法(\ texttt {SMM})的收敛性。我们还将\ texttt {SMM}与两种领先方法进行了比较关于现实生活问题的文献。在某些情况下,观察到了显着的改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号