首页> 外文OA文献 >Measuring the adhesion of Ti/HA coatings to non-metallic implant materials
【2h】

Measuring the adhesion of Ti/HA coatings to non-metallic implant materials

机译:测量Ti / Ha涂层与非金属植入材料的粘附性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Introduction: Novel biomaterials may offer alternatives to metal arthroplasty bearings. To employ these materials in thin, bone conserving implants would require direct fixation to bone, using Titanium/HA coatings. Standard tests are used to evaluate the adhesion strength of coatings to metal substrates [1], versus FDA pass criteria [2]. In tensile adhesion testing, a disc is coated and uniform, uniaxial tension is exerted upon the coating-substrate interface; the strength is calculated from the failure load and surface area. Rapid failure occurs when the peak interface stress exceeds the adhesion strength, as local failure will propagate into an increasing tensile stress field.Ceramics and reinforced polymers (e.g. carbon-fibre-reinforced PEEK), have considerably different stiffness (E) and Poisson's Ratio (?) from the coating and implant metals. We hypothesised that this substrate-coating stiffness mismatch would produce stress concentrations at the interface edge, well in excess of the uniform stress experienced with coatings on similar stiffness metals.Methodology: The interface tensile stress field was predicted for the ASTM F1147 tensile strength test with a finite element analysis model, with a 500 ?m thick coating (50 ?m dense Ti layer, 450 ?m porous Ti/HA/adhesive layer), bonded to a stainless steel headpiece with FM1000 adhesive (Fig. 1). Solutions were obtained for:Configuration A: ASTM-standard geometry with Ti-6Al-4V (E = 110GPa, ? = 0.31), CoCrMo (E = 196GPa, ? = 0.30), ceramic (E = 350GPa, ? = 0.22, e.g. BIOLOX delta) and CFR-PEEK (E = 15GPa, ? = 0.41, e.g. Invibio MOTIS) substrates.Modified models were used to analyse oversized substrate discs:Configuration B: coated fully and bonded to the standard diameter headpiece, andConfiguration C: Coated only where bonded to the headpiece.Results and Discussion: The stiffness mismatch between the coating and the ceramic and CFR-PEEK substrates was predicted to introduce, respectively, a 1.80x and 3.57x stress concentration compared to a Ti6Al4V substrate (Fig. 2), thereby reducing the failure load for a given interface strength. These predictions consider the test stress distribution only, and do not assess the coating-substrate interface strength. However, the failure load is a function of the interface strength and the peak test stress, so the standard test and stress calculation for stiffness-mismatched substrates may indicate artificially low adhesion strength.The test may be modified to suit a particular material combination. As an example, for ceramic substrates the results indicate that an oversized, fully coated specimen (B) would experience stress closest to the standard's intended uniform stress field, suggesting that this configuration would be more appropriate. The stress distribution may be sensitive to the coating thickness, so tests should be verified accordingly.Conclusion: The ASTM coating tensile adhesion strength test standard was predicted to generate a non-uniform interfacial stress for ceramic and polymer composite substrate materials. The standard may not be directly applicable for non-metal substrates as the stiffness mismatch needs to be considered.
机译:简介:新型生物材料可能提供金属关节置换轴承的替代产品。为了将这些材料用于薄的,具有骨骼保护作用的植入物,需要使用Titanium / HA涂层直接固定到骨骼上。使用标准测试来评估涂料对金属基材的粘附强度[1],与FDA通过标准[2]相比。在拉伸粘附力测试中,对圆盘进行涂覆并使其均匀,在涂层与基材之间的界面上施加单轴张力。强度由破坏载荷和表面积计算得出。当峰值界面应力超过粘合强度时,会发生快速破坏,因为局部破坏会传播到增加的拉应力场中。陶瓷和增强聚合物(例如碳纤维增强的PEEK)的刚度(E)和泊松比( ?)从涂层和植入金属。我们假设这种基材与涂层的刚度失配会在界面边缘产生应力集中,远远超过了类似刚度金属上的涂层所承受的均匀应力。方法:为ASTM F1147拉伸强度测试预测一个有限元分析模型,该涂层具有500 µm厚的涂层(50 µm的致密Ti层,450 µm的多孔Ti / HA /粘合剂层),并用FM1000粘合剂粘结到不锈钢头架上(图1)。获得以下溶液:配置A:具有Ti-6Al-4V(E = 110GPa,α= 0.31),CoCrMo(E = 196GPa,α= 0.30),陶瓷(E = 350GPa,α= 0.22,例如BIOLOX delta)和CFR-PEEK(E = 15GPa,?= 0.41,例如Invibio MOTIS)基板。修改后的模型用于分析超大尺寸的光盘:配置B:完全涂覆并粘结到标准直径的机头,配置C:仅涂覆结果与讨论:与Ti6Al4V基板相比,预计涂层与陶瓷基板和CFR-PEEK基板之间的刚度不匹配会分别导致1.80x和3.57x应力集中(图2),从而降低了给定界面强度下的失效载荷。这些预测仅考虑了测试应力分布,而没有评估涂层与基材之间的界面强度。但是,破坏载荷是界面强度和峰值测试应力的函数,因此对于刚性不匹配的基材,标准测试和应力计算可能表明人为地降低了粘合强度,可以对该测试进行修改以适合特定的材料组合。例如,对于陶瓷基板,结果表明,超大尺寸,完全涂覆的样品(B)所承受的应力最接近于标准的预期均匀应力场,这表明这种配置将更为合适。应力分布可能对涂层的厚度敏感,因此应相应地进行测试。结论:ASTM涂层的拉伸粘合强度测试标准被预测会产生陶瓷和聚合物复合材料的非均匀界面应力。由于需要考虑刚度不匹配,因此该标准可能不适用于非金属基材。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号