首页> 外文OA文献 >A message-passing approach to decentralised parallel machine scheduling
【2h】

A message-passing approach to decentralised parallel machine scheduling

机译:分散式并行机调度的消息传递方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper tackles the problem of parallelizing heterogeneous computational tasks across a number of computational nodes (aka agents) where each agent may not be able to perform all the tasks and may have different computational speeds. An equivalent problem can be found in operations research, and it is known as scheduling tasks on unrelated parallel machines (also known as R?Cmax). Given this equivalence observation, we present the spanning tree decentralized task distribution algorithm (ST-DTDA), the first decentralized solution to R?Cmax. ST-DTDA achieves decomposition by means of the min–max algorithm, a member of the generalized distributive law family, that performs inference by message-passing along the edges of a graphical model (known as a junction tree). Specifically, ST-DTDA uses min–max to optimally solve an approximation of the original R?Cmax problem that results from eliminating possible agent-task allocations until it is mapped into an acyclic structure. To eliminate those allocations that are least likely to have an impact on the solution quality, ST-DTDA uses a heuristic approach. Moreover, ST-DTDA provides a per-instance approximation ratio that guarantees that the makespan of its solution (optimal in the approximated R?Cmax problem) is not more than a factor ? times the makespan of the optimal of the original problem. In our empirical evaluation of ST-DTDA, we show that ST-DTDA, with a min-regret heuristic, converges to solutions that are between 78 and 95% optimal whilst providing approximation ratios lower than 3.
机译:本文解决了跨多个计算节点(又称为代理)并行化异构计算任务的问题,其中每个代理可能无法执行所有任务,并且可能具有不同的计算速度。在运筹学中可以找到一个等效的问题,称为不相关并行机上的调度任务(也称为R?Cmax)。鉴于这种等效观察,我们提出了生成树分散任务分配算法(ST-DTDA),这是R?Cmax的第一个分散解决方案。 ST-DTDA通过min-max算法(广义分布律族的成员)实现分解,该算法通过沿图形模型(称为连接树)的边缘传递消息来执行推理。特别是,ST-DTDA使用min-max来最佳解决原始R?Cmax问题的近似问题,该问题是由于消除可能的代理程序任务分配直至映射为非循环结构而导致的。为了消除那些对解决方案质量影响最小的分配,ST-DTDA使用了一种启发式方法。而且,ST-DTDA提供了每个实例的近似比率,可确保其解决方案的有效期(在近似的R?Cmax问题中是最优的)不大于因子λ。乘以原始问题最优值的制造时间。在我们对ST-DTDA的经验评估中,我们发现具有最小后悔启发法的ST-DTDA收敛到最优解在78%到95%之间的解决方案,同时提供的近似值低于3。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号