首页> 外文OA文献 >Genetic algorithm based optimisation of FRP composite plates in ship structures
【2h】

Genetic algorithm based optimisation of FRP composite plates in ship structures

机译:基于遗传算法的船舶结构FRp复合板优化设计

摘要

Composite materials (herein means Fibre Reinforced Plastic, FRP) are increasingly usedin the construction of marine vehicles because of their outstanding strength, stiffness andlight weight properties. However, the use of FRP comes with difficulties in the design process as a result of the large number of design variables involved: composite material design, topologies and laminate schemes. All variables are related to each other leading to a high dimensional and flexible design space. It is hard to use traditional design methods in order to gain solutions for an initial design stage in a short time. Hence, this thesis deals with the presentation of a structural synthesis (optimisation framework) for plate components of composite ship structures. The framework broadly consists of an optimisation technique and structural analytical methods.To make the framework compatible with the nature of composite ship structural design problems, the Genetic Algorithm (GA) is selected as the optimisation tool because of its robustness, its ability in dealing with both continuous and discrete variables and its excellent searching for a global optimum. The typical plate types in a ship structure are the stiffened and unstiffened plates. For a stiffened plate, the combination of the grillage analysis of energy method based on Navier solution and an equivalent elastic properties approach are introduced. Using this, it is possible to produce layer by layer optimisation results for the base plate, web and crown of the stiffened plate. Unfortunately, solutions of the adopted grillage analysis do not cover the mechanical behaviour of the plate between stiffeners so the Higher-Order Shear Deformation Theory (HSDT) must be employed.This method provides accurate solutions for thin to moderately thick plates with a compromised computational time. Then stiffness, strength and stability can be considered in the design problem. In addition, to achieve the program of the structural synthesis, various computational modules are implemented according to the evaluation of composite micromechanics properties, maximum stress failure criteria and structural weight function. Then the main modules are validated with available resources. The usefulness of the program has been proved by comparing it with the optimal solutions from finite element software. Finally, many application examples of secondary and tertiary composite ship structures are presented. The optimal results prove the success of the optimisation framework. This could be evidence for further improvement to obtain a valuable structural optimisation tool.
机译:复合材料(在这里是指纤维增强塑料,FRP)由于其出色的强度,刚度和轻质特性而越来越多地用于船舶的制造中。但是,由于涉及大量设计变量:复合材料设计,拓扑结构和层压方案,在设计过程中使用FRP会遇到困难。所有变量彼此相关,从而导致高尺寸和灵活的设计空间。很难使用传统的设计方法来在短时间内获得初始设计阶段的解决方案。因此,本论文涉及复合船结构板构件的结构综合(优化框架)的表示。该框架主要由优化技术和结构分析方法组成。为了使框架与复合材料船结构设计问题的性质兼容,选择遗传算法(GA)作为优化工具,因为它的鲁棒性和处理能力连续变量和离散变量,以及对全局最优值的出色搜索。船舶结构中典型的板类型是加劲板和非加劲板。对于加筋板,介绍了基于Navier解的能量格栅分析方法和等效弹性特性方法的组合。使用此方法,可以为加强板的基板,腹板和胎冠逐层生成优化结果。不幸的是,采用的格栅分析方法无法解决加劲肋之间板的机械性能问题,因此必须采用高阶剪切变形理论(HSDT),该方法可为薄至中厚板提供准确的解决方案,但会缩短计算时间。然后可以在设计问题中考虑刚度,强度和稳定性。此外,为实现结构综合程序,根据对复合材料微力学性能,最大应力破坏准则和结构重量函数的评估,实现了各种计算模块。然后,使用可用资源验证主要模块。通过与有限元软件的最优解进行比较,证明了该程序的实用性。最后,给出了二级和三级复合船结构的许多应用实例。最优结果证明了优化框架的成功。这可能是进一步改进以获得有价值的结构优化工具的证据。

著录项

  • 作者

    Maneepan Komsan;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号