首页> 外文OA文献 >Distributed multiagent learning with a broadcast adaptive subgradient method
【2h】

Distributed multiagent learning with a broadcast adaptive subgradient method

机译:利用广播自适应子梯度方法进行分布式多agent学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many applications in multiagent learning are essentially convex optimization problems in which agents have only limited communication and partial information about the function being minimized (examples of such applications include, among others, coordinated source localization, distributed adaptive filtering, control, and coordination). Given this observation, we propose a new non-hierarchical decentralized algorithm for the asymptotic minimization of possibly time-varying convex functions. In our method each agent has knowledge of a time-varying local cost function, and the objective is to minimize asymptotically a global cost function defined by the sum of the local functions. At each iteration of our algorithm, agents improve their estimates of a minimizer of the global function by applying a particular version of the adaptive projected subgradient method to their local functions. Then the agents exchange and mix their improved estimates using a probabilistic model based on recent results in weighted average consensus algorithms. The resulting algorithm is provably optimal and reproduces as particular cases many existing algorithms (such as consensus algorithms and recent methods based on the adaptive projected subgradient method). To illustrate one possible application, we show how our algorithm can be applied to coordinated acoustic source localization in sensor networks
机译:多主体学习中的许多应用本质上都是凸优化问题,其中主体仅具有有限的沟通和关于功能被最小化的部分信息(此类应用的示例包括协调源定位,分布式自适应过滤,控制和协调等)。鉴于此观察,我们提出了一种新的非分层分散算法,用于可能时变凸函数的渐近最小化。在我们的方法中,每个代理都具有随时间变化的局部成本函数的知识,目标是渐近地最小化由局部函数之和定义的全局成本函数。在我们算法的每次迭代中,代理通过将特定版本的自适应投影次梯度方法应用于其局部函数来改进其对全局函数最小化器的估计。然后,代理根据加权平均共识算法中的最新结果,使用概率模型交换并混合他们的改进估计。所得的算法证明是最优的,并在特定情况下重现许多现有算法(例如共识算法和基于自适应投影次梯度方法的最新方法)。为了说明一种可能的应用,我们展示了如何将我们的算法应用于传感器网络中的协调声源定位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号