首页> 外文OA文献 >Urban traffic state estimation for signal control usingmixed data sources and the extended Kalman filter
【2h】

Urban traffic state estimation for signal control usingmixed data sources and the extended Kalman filter

机译:基于maTLaB的信号控制城市交通状态估计混合数据源和扩展卡尔曼滤波器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes a methodology for fusing data from multiple sensors, including wireless devices and inductive loops, to make an estimation of the instantaneous state of an urban traffic network. An extended Kalman filter is employed along with a state evolution model to make estimates of the state in a discretized network. The instantaneous state is an estimate of the current distribution of vehicles in the network and their instantaneous speeds. Microsimulation tests were used to evaluate the performance of the state estimation on a small urban networks. These results indicate low error between the estimated state and the known ground truth.
机译:本文介绍了一种融合来自多个传感器(包括无线设备和感应回路)的数据的方法,以估算城市交通网络的瞬时状态。与状态演化模型一起使用扩展的卡尔曼滤波器,以估计离散网络中的状态。瞬时状态是对网络中车辆当前分布及其瞬时速度的估计。微观模拟测试用于评估小型城市网络上状态估计的性能。这些结果表明,估计状态与已知的地面真理之间的误差很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号