首页> 外文OA文献 >Learning periodic human behaviour models from sparse data for crowdsourcing aid delivery in developing countries
【2h】

Learning periodic human behaviour models from sparse data for crowdsourcing aid delivery in developing countries

机译:从稀疏数据中学习定期人类行为模型,以便在发展中国家提供众包援助

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In many developing countries, half the population lives in rural locations, where access to essentials such as school materials, mosquito nets, and medical supplies is restricted. We propose an alternative method of distribution (to standard road delivery) in which the existing mobility habits of a local population are leveraged to deliver aid, which raises two technical challenges in the areas optimisation and learning. For optimisation, a standard Markov decision process applied to this problem is intractable, so we provide an exact formulation that takes advantage of the periodicities in human location behaviour. To learn such behaviour models from sparse data (i.e., cell tower observations), we develop a Bayesian model of human mobility. Using real cell tower data of the mobility behaviour of 50,000 individuals in Ivory Coast, we find that our model outperforms the state of the art approaches in mobility prediction by at least 25% (in held-out data likelihood). Furthermore, when incorporating mobility prediction with our MDP approach, we find a 81.3% reduction in total delivery time versus routine planning that minimises just the number of participants in the solution path.
机译:在许多发展中国家,一半的人口生活在农村地区,那里的生活必需品如学校材料,蚊帐和医疗用品的供应受到限制。我们提出了另一种分配方法(标准道路运输),其中利用了当地居民的现有流动习惯来提供援助,这在优化和学习领域提出了两个技术挑战。为了优化,适用于此问题的标准马尔可夫决策过程很棘手,因此我们提供了一种精确的公式,该公式利用了人类位置行为的周期性。为了从稀疏数据(即细胞塔观测)中学习此类行为模型,我们开发了人类活动的贝叶斯模型。使用有关象牙海岸50,000个人移动行为的真实细胞塔数据,我们发现我们的模型在移动性预测方面比最先进的方法至少好25%(在保持数据的可能性下)。此外,将移动性预测与我们的MDP方法结合使用时,我们发现与常规计划相比,总交付时间减少了81.3%,这使解决方案路径中的参与者数量最小化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号