首页> 外文OA文献 >Autonomous experimentation: coupling machine learning with computer controlled microfluidics
【2h】

Autonomous experimentation: coupling machine learning with computer controlled microfluidics

机译:自主实验:将机器学习与计算机控制的微流体耦合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modelling biological systems is impaired by the cost of experimentally obtaining the data required to build the models. The resources available to perform experiments are typically very limited compared to the size of parameter spaces and the complexity of the systems under investigation. However, the confluence of laboratory automation and the low cost of computing resources make it practicable to apply a closed-loop strategy, where each experimental observation allows the computer to reason the experiment to perform next. By doing so, autonomous experimentation tries to capture the efficiency of experimentalists in navigating a seemingly boundless space of potential experiments. While computers can at most represent a very limited knowledge context in which they interpret their observations, they do have the benefit of being able to contemplate many thousands of hypotheses in parallel.We will report on the development of an autonomous experimentation setup that devises hypotheses and decides on experiments which are then physically performed on a microfluidic device, all without human interaction. The purpose of our implementation is the investigation of biomolecular substrates for novel computing devices, however our approach is not specific to this application.
机译:通过实验获得构建模型所需数据的成本会损害对生物系统进行建模的费用。与参数空间的大小和所研究系统的复杂性相比,可用于进行实验的资源通常非常有限。但是,实验室自动化的融合和低廉的计算资源成本使得应用闭环策略是可行的,在这种策略中,每次实验观察都可以使计算机推理出下一步要执行的实验。通过这样做,自主实验试图抓住实验者在可能看似无限的潜在实验空间中导航的效率。虽然计算机最多只能代表一个非常有限的知识背景来解释其观察结果,但它们的确具有能够并行地考虑成千上万个假设的好处。我们将报告设计假设和假设的自主实验装置的发展。决定在没有人为干预的情况下在微流体设备上进行物理实验。我们实施的目的是研究新型计算设备的生物分子底物,但是我们的方法并不特定于此应用。

著录项

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号