首页> 外文OA文献 >A new method for automatic Multiple Partial Discharge Classification
【2h】

A new method for automatic Multiple Partial Discharge Classification

机译:一种新的自动多局部放电分类方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new wavelet based feature parameter have been developed to represent the characteristics of PD activities, i.e. the wavelet decomposition energy of PD pulses measured from non-conventional ultra wide bandwidth PD sensors such as capacitive couplers (CC) or high frequency current transformers (HFCT). The generated feature vectors can contain different dimensions depending on the length of recorded pulses. These high dimensional feature vectors can then be processed using Principal Component Analysis (PCA) to map the data into a three dimensional space whilst the first three most significant components representing the feature vector are preserved. In the three dimensional mapped space, an automatic Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is then applied to classify the data cluster(s) produced by the PCA. As the procedure is undertaken in a three dimensional space, the obtained clustering results can be easily assessed. The classified PD sub-data sets are then reconstructed in the time domain as phase-resolved patterns to facilitate PD source type identification. The proposed approach has been successfully applied to PD data measured from electrical machines and power cables where measurements were undertaken in different laboratories.
机译:已经开发出一种新的基于小波的特征参数来表示PD活动的特征,即从非常规超宽带PD传感器(例如电容耦合器(CC)或高频电流互感器(HFCT))测量的PD脉冲的小波分解能量。所生成的特征向量可以根据记录的脉冲长度包含不同的维度。然后可以使用主成分分析(PCA)处理这些高维特征向量,以将数据映射到三维空间中,同时保留代表特征向量的前三个最重要的成分。然后,在三维映射的空间中,将基于噪声的应用程序基于密度的自动空间聚类(DBSCAN)算法应用于对PCA生成的数据集群进行分类。由于该过程是在三维空间中进行的,因此可以轻松评估获得的聚类结果。然后,将已分类的PD子数据集在时域中重构为相位解析模式,以方便PD源类型识别。所提出的方法已成功应用于从电机和电缆测量的PD数据,这些数据是在不同实验室进行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号