首页> 外文OA文献 >Journey time estimation using single inductive loop detectors on non-signalised links
【2h】

Journey time estimation using single inductive loop detectors on non-signalised links

机译:在非信号链路上使用单个感应环路检测器估算行程时间

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes two techniques designed to estimate vehicle journey times on non-signalised roads, using 250 ms digital loop-occupancy data produced by single inductive loop detectors. A mechanistic and a neural network approach provided historical journey time estimates every 30 s, based on the data collected from the previous 30 s period. These 30s estimates would provide the traffic network operator with immediate post-event congestion information on roads where no close circuit television cameras were present. The mechanistic approach estimated Journey times every 30 s between pairs of detectors, using the knowledge of vehicle speed derived from the loops and the distances between them. The 30s average loop-occupancy time per vehicle, average time-gap between vehicles and percentage occupancy parameters derived from the inductive loops were presented to a neural network for training along with the associated vehicles' measured journey times. The neural network was shown to consistently out-perform the mechanistic approach (in terms of the mean absolute percentage deviation from the mean measured travel time), particularly when using pairs of detectors
机译:本文介绍了两种技术,这些技术使用单个感应环路检测器产生的250 ms数字环路占用数据来估算非信号道路上的车辆行驶时间。机械和神经网络方法基于过去30 s期间收集的数据,每30 s提供一次历史行程时间估计。这30 s的估算值将为交通网络运营商提供在没有闭路电视摄像机存在的道路上即时的事后交通拥堵信息。机械方法利用从环路和环路之间的距离得出的车速知识,估计每对检测器之间每30 s的行程时间。将每辆车30秒钟的平均循环占用时间,平均车辆间隔和从感应回路得出的占用率百分比参数与相关车辆的行驶时间一起提供给神经网络进行训练。结果表明,神经网络始终优于机械方法(就平均绝对百分比偏差而言,与平均测量行程时间相比),特别是在使用检测器对时

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号