首页> 外文OA文献 >Modifying the magnetic properties of Laves phase intermetallic multilayers and films by nano-patterning and ion implantation
【2h】

Modifying the magnetic properties of Laves phase intermetallic multilayers and films by nano-patterning and ion implantation

机译:通过纳米图案化和离子注入改变Laves相金属间多层膜和薄膜的磁性

摘要

Since the pioneering work of Kneller & Hawig and Skomski & Coey some 20 yearsago, the topic of exchange springs has received considerable attention. Exchangesprings, systems where thin hard and soft magnetic layers are alternately arranged inmultilayer stacks, provide great potential in improving the performance of a wide rangeof devices, from permanent hard magnets and microelectromechanical sensors andactuators, to magnetoresistive random access memory and permanent magnetic datastorage. Artificial structuring on the nano-scale will be beneficial in improving thefunctionality of exchange spring systems in all of these areas. In this work, twodistinctly different routes to nano-structuring in epitaxially grown rare earth – iron(REFe2) films and exchange spring materials are described. Namely i) electron beamlithography and Ar+ ion milling to define three-dimensional nano-scale structures, andii) ion implantation to directly alter the crystalline structure of the material at theatomic-scale. Nano-scale elements defined in REFe2 exchange spring materials arepresented, providing not only the first demonstration of nano-structuring in thesematerials, but also the successful implementation of electron beam lithography and Ar+ion milling on these novel systems. Nano-scale patterning confirms the suitability ofthe REFe2 exchange spring materials as excellent candidates for magnetic data storagemedia, since they remain relatively unaffected by nano-structuring, retaining theirthermal stability and comparatively small coercivity. Ar+ ion implantation is shown tobe effective at artificial structuring on the atomic-scale. In addition, energetic Ar+ ionshave been successfully used to accurately control the easy and hard axes ofmagnetization within epitaxial YFe2 and DyFe2 films and a DyFe2 / YFe2 exchangespring multilayer. At a fluence of ~ 1017 Ar+ ions cm-2, the magnetoelastic anisotropy(dominant at room temperature in the epitaxially grown films) is reduced to such anextent that the intrinsic magnetocrystalline anisotropy begins to dominate. Thus Ar+ ionimplantation serves to alter the easy and hard axes of magnetization, rotating themthrough 90°. Such behaviour is clearly evident in hysteresis loops obtained by both themagneto optical Kerr effect and vibrating sample magnetometry, and is furtherconfirmed by micromagnetic modelling. The reduction in magnetoelastic anisotropy isattributed to energetic Ar+ ions causing RE atoms to relax to their unstrained latticepositions, thereby relieving the strain responsible for the magnetoelastic anisotropy.This interpretation is confirmed by X-ray diffraction measurements.
机译:自从Kneller&Hawig和Skomski&Coey的开创性工作大约20年前以来,交换弹簧这一话题就引起了极大的关注。交换弹簧是将硬硬和软磁薄层交替排列在多层堆栈中的系统,具有极大的潜力,可以改善从永久性硬磁铁,微机电传感器和执行器到磁阻随机存取存储器和永久磁数据存储的各种设备的性能。在所有这些领域中,纳米级的人工结构将有助于改善交换弹簧系统的功能。在这项工作中,描述了在外延生长的稀土-铁(REFe2)膜和交换弹簧材料中纳米结构的两种截然不同的途径。即:i)电子束光刻和Ar +离子铣削,以定义三维纳米尺度的结构,以及ii)离子注入,以在解剖学尺度上直接改变材料的晶体结构。介绍了在REFe2交换弹簧材料中定义的纳米级元素,不仅提供了这些材料中纳米结构的首次展示,而且还成功地在这些新颖的系统上实现了电子束光刻和Ar +离子铣削。纳米级图案确认了REFe2交换弹簧材料是否适合用作磁性数据存储介质,因为它们相对不受纳米结构的影响,保持了其热稳定性和相对较小的矫顽力。实验表明,在原子尺度上,Ar +离子注入可有效地进行人工结构化。此外,高能Ar +离子已成功用于精确控制外延YFe2和DyFe2薄膜以及DyFe2 / YFe2交换弹簧多层膜内的易磁化轴和硬磁化轴。在〜1017 Ar +离子cm-2的能量密度下,磁弹性各向异性(在室温下在外延生长的薄膜中占主导)降低到足以使固有的磁晶各向异性开始占主导地位的程度。因此,Ar +离子注入可改变易磁化轴和硬磁化轴,将其旋转90°。这种现象在通过磁克尔效应和振动样品磁力法获得的磁滞回线中很明显,并且通过微磁建模得到了进一步证实。磁弹性各向异性的降低归因于高能的Ar +离子,导致RE原子松弛到其未应变的晶格位置,从而消除了引起磁弹性各向异性的应变,这一解释已通过X射线衍射测量得到证实。

著录项

  • 作者

    Buckingham Andrew Roger;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号