首页> 外文OA文献 >Acoustic Vehicle Classification by Fusing with Semantic Annotation
【2h】

Acoustic Vehicle Classification by Fusing with Semantic Annotation

机译:基于语义标注融合的声学车辆分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Current research on acoustic vehicle classification has been generally aimed at utilizing various feature extraction methods and pattern recognition techniques. Previous research in gait biometrics has shown that domain knowledge or semantic enrichment can assist in improving the classification accuracy. In this paper, we address the problem of semantic enrichment by learning the semantic attributes from the training set, and then formalize the domain knowledge by using ontologies. We first consider a simple data ontology, and discuss how to use it for classification. Next we propose a scheme, which uses a semantic attribute to mediate information fusion for acoustic vehicle classification. To assess the proposed approaches, experiments are carried out based on a data set containing acoustic signals from five types of vehicles. Results indicate that whether the above semantic enrichment can lead to improvement depends on the accuracy of semantic annotation. Among the two enrichment schemes, semantically mediated information fusion achieves less significant improvement, but is insensitive to the annotation error.
机译:当前关于声学车辆分类的研究通常旨在利用各种特征提取方法和模式识别技术。先前关于步态生物识别的研究表明,领域知识或语义丰富可以帮助提高分类准确性。在本文中,我们通过从训练集中学习语义属性来解决语义丰富的问题​​,然后使用本体将领域知识形式化。我们首先考虑一个简单的数据本体,然后讨论如何使用它进行分类。接下来,我们提出一种方案,该方案使用语义属性来介导信息融合以进行声学车辆分类。为了评估提出的方法,基于包含来自五种类型车辆的声信号的数据集进行了实验。结果表明,上述语义充实能否带来改善,取决于语义标注的准确性。在这两种富集方案中,语义介导的信息融合取得的改进不太明显,但对注释错误不敏感。

著录项

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号