首页> 外文OA文献 >Detecting and monitoring behavioural change through personalised ambient monitoring
【2h】

Detecting and monitoring behavioural change through personalised ambient monitoring

机译:通过个性化环境监测来检测和监控行为变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bipolar disorder (BD) is one form of mental illness and is estimated to affect around0.4{1.6% of the population. The disorder is characterised by recurrent episodes of maniaand depression and is estimated to cost the UK economy £5.21 billion a year. Manypeople with BD self-monitor their behaviour to help them identify the early warningsigns of an affective episode. The Personalised Ambient Monitoring (PAM) projecthas been conceived take ideas from existing telehealth systems and apply them to BD.By using a distributed network of discreet, unobtrusive sensors, the user's behaviouralpatterns can be monitored and deviations in their behaviour can be detected. In doingso it is hoped that the early warning signs can be detected and that this can be used toassist them in their self-monitoring.The PAM system is being developed by a multi-disciplinary team based at the ISVR andthe School of Management at the University of Southampton, the School of Electricaland Electronic Engineering at the University of Nottingham and the Department ofComputing Science and Mathematics at the University of Stirling.This thesis presents the background and motivations for the PAM project, the approachthe project will take, a review of appropriate data analysis techniques and the experimentalwork that has been undertaken in the investigation of accelerometry for activitymonitoring, the use of a wireless camera to monitor a complex environment and the useof multiple sensors to capture behaviour patterns in a technical trial.Results from the technical trial show that it is possible to process information froma variety of sensors to identity activity signatures and behavioural patterns in normalcontrols. When these activity patterns are trained on week-days, the results presentedshow that it is possible to identify weekend days as being behaviourally different.
机译:躁郁症(BD)是一种精神疾病,据估计会影响约0.4 {1.6%的人口。这种疾病的特点是反复发作的躁狂和抑郁症,估计每年给英国经济造成52.1亿英镑的损失。许多患有BD的人会自我监控自己的行为,以帮助他们识别情感事件的早期预警信号。设想了个性化环境监测(PAM)项目,它将现有的远程医疗系统的想法应用到BD中。通过使用离散,无干扰传感器的分布式网络,可以监控用户的行为模式并可以检测其行为偏差。这样做可以希望能够检测到预警信号,并可以将其用于自我监测。PAM系统由ISVR和大学管理学院的多学科团队开发。南安普顿大学,诺丁汉大学电气与电子工程学院以及斯特灵大学计算机科学与数学系。本文介绍了PAM项目的背景和动机,该项目将采用的方法以及适当数据的审查在一项用于技术监测的加速度计研究中进行的分析技术和实验工作,使用无线摄像头监测复杂环境以及在技术试验中使用多个传感器捕获行为模式。技术试验的结果表明可以处理来自各种传感器的信息以识别活动签名和正常对照中的行为模式。当在工作日中对这些活动模式进行培训时,显示的结果表明可以将周末确定为行为上有所不同。

著录项

  • 作者

    Amor James D.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号