首页> 外文OA文献 >A Study of Quality Issues for Image Auto-Annotation with the Corel Data-Set
【2h】

A Study of Quality Issues for Image Auto-Annotation with the Corel Data-Set

机译:基于Corel数据集的图像自动标注质量问题研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Corel Image set is widely used for image annotation performance evaluation although it has been claimed that Corel images are relatively easy to annotate. The aim of this paper is to demonstrate some of the disadvantages of data-sets like the Corel set for effective auto-annotation evaluation. We first compare the performance of several annotation algorithms using the Corel set and find that simple near neighbour propagation techniques perform fairly well. A Support Vector Machine (SVM) based annotation method achieves even better results, almost as good as the best found in the literature. We then build a new image collection using the Yahoo Image Search engine and query-by-single-word searches to create a more challenging annotated set automatically. Then, using three very different image annotation methods, we demonstrate some of the problems of annotation using the Corel set compared with the Yahoo based training set. In both cases the training sets are used to create a set of annotations for the Corel test set.
机译:尽管已经宣称Corel图像相对易于注释,但Corel Image集被广泛用于图像注释性能评估。本文的目的是演示一些数据集的缺点,例如用于有效的自动注释评估的Corel集。我们首先比较使用Corel集的几种注释算法的性能,发现简单的近邻传播技术的性能相当好。基于支持向量机(SVM)的注释方法可达到更好的结果,几乎与文献中的最佳结果一样好。然后,我们使用Yahoo图像搜索引擎和单字查询来构建新的图像集合,以自动创建更具挑战性的带注释集。然后,使用三种非常不同的图像注释方法,与基于Yahoo的训练集相比,我们展示了使用Corel集进行注释的一些问题。在这两种情况下,训练集都用于为Corel测试集创建一组注释。

著录项

  • 作者

    Tang Jiayu; Lewis Paul;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号