首页> 外文OA文献 >Using Social Data as Context for Making Recommendations: An Ontology based Approach
【2h】

Using Social Data as Context for Making Recommendations: An Ontology based Approach

机译:使用社交数据作为建议的上下文:基于本体的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Web-based knowledge systems support an impressive and growing amount of information. Among the difficulties faced by these systems is the problem of overwhelming the user with a vast amount of data, often referred to as information overload. The problem has escalated with the ever increasing issues of time constraints and the extensive use of handheld devices. The use of context is one possible way out helping with this situation. To provide a more robust approach to context gathering we propose the use of Social Web technologies alongside the Semantic Web. As the social web is heavily used it could provide a better understanding of a user’s interests and intentions. The proposed system gathers information about users from their social web identities and enriches it with ontological knowledge. Thus an interest model for the user can be created which can serve as a good source of contextual knowledge. This work bridges the gap between the user and system searches by analyzing the virtual existence of a user and making interesting recommendations accordingly.
机译:基于Web的知识系统支持数量惊人且不断增长的信息。这些系统面临的困难之一是用大量数据淹没用户的问题,通常被称为信息过载。随着时间限制和手持设备的广泛使用,这一问题日益严重。使用上下文是解决这种情况的一种可能方法。为了提供一种更强大的上下文收集方法,我们建议将社交网络技术与语义网一起使用。随着社交网络的广泛使用,它可以更好地了解用户的兴趣和意图。所提出的系统从用户的社交网络身份收集有关用户的信息,并通过本体知识丰富其信息。因此,可以为用户创建兴趣模型,该兴趣模型可以用作上下文知识的良好来源。通过分析用户的虚拟存在并相应地提出有趣的建议,这项工作弥合了用户和系统搜索之间的鸿沟。

著录项

  • 作者

    Noor Salma; Martinez Kirk;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号