首页> 外文OA文献 >An investigation into adaptive power reduction techniques for neural hardware
【2h】

An investigation into adaptive power reduction techniques for neural hardware

机译:神经硬件自适应功率降低技术研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In light of the growing applicability of Artificial Neural Network (ANN) in the signal processing field [1] and the present thrust of the semiconductor industry towards lowpower SOCs for mobile devices [2], the power consumption of ANN hardware has become a very important implementation issue. Adaptability is a powerful and useful feature of neural networks. All current approaches for low-power ANN hardware techniques are ‘non-adaptive’ with respect to the power consumption of the network (i.e. power-reduction is not an objective of the adaptation/learning process). In the research work presented in this thesis, investigations on possible adaptive power reduction techniques have been carried out, which attempt to exploit the adaptability of neural networks in order to reduce the power consumption. Three separate approaches for such adaptive power reduction are proposed: adaptation of size, adaptation of network weights and adaptation of calculation precision. Initial case studies exhibit promising results with significantpower reductions
机译:鉴于人工神经网络(ANN)在信号处理领域的应用不断增长[1]以及半导体行业当前对移动设备低功耗SOC的推动力[2],ANN硬件的功耗已变得非常重要实施问题。适应性是神经网络的强大而有用的功能。就网络功耗而言,当前所有用于低功耗ANN硬件技术的方法都是“非自适应的”(即,降低功耗不是适应/学习过程的目标)。在本文的研究工作中,对可能的自适应功率降低技术进行了研究,试图利用神经网络的适应性来降低功耗。提出了三种用于这种自适应功率降低的单独方法:大小的自适应,网络权重的自适应和计算精度的自适应。最初的案例研究显示出令人鼓舞的结果,并大大降低了功耗

著录项

  • 作者

    Modi Sankalp;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号