首页> 外文OA文献 >Ocean Ensemble Forecasting, Part I: Ensemble Mediterranean Winds from a Bayesian Hierarchical Model
【2h】

Ocean Ensemble Forecasting, Part I: Ensemble Mediterranean Winds from a Bayesian Hierarchical Model

机译:海洋集合预报,第一部分:贝叶斯分层模型的地中海风集合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A Bayesian Hierarchical Model (BHM) is developed to estimate surface vector wind fields (SVW),and associated uncertainties, over the Mediterranean Sea. The BHM-SVW incorporates data-stageinputs from analyses and forecasts of the European Centre for Medium-Range Weather Forecasts(ECMWF) and from the QuikSCAT data record. The process model stage of the BHM-SVWis based on a Rayleigh Friction Equation model for surface winds. Dynamical interpretationsof posterior distributions of the BHM-SVW parameters are discussed. Ten realizations from theposterior distribution the BHM-SVW are used to force the data assimilation step of an experimentalensemble ocean forecast system for the Mediterranean Sea in order to create a set of ensembleinitial conditions. Ensemble initial condition spread is quantified by computing standard deviationsof ocean state variable fields over the 10 ensemble members, driven by 10 realizations from theBHM-SVW posterior distribution over a 14-day sequential data assimilation period. Ensemblespread occurs on mesoscale time and space scales, in close association with strong synoptic scalewind forcing events. A companion paper compares the performance of the MFS ensemble forecastsgiven initial condition generation and forecast forcing from the BHM-SVW, with forecasts basedon more traditional methods of ensemble generation
机译:建立贝叶斯层次模型(BHM)来估计地中海上的地表矢量风场(SVW)和相关的不确定性。 BHM-SVW结合了欧洲中距离天气预报中心(ECMWF)的分析和预报以及QuikSCAT数据记录中的数据阶段输入。基于表面风的瑞利摩擦方程模型的BHM-SVWis的过程模型阶段。讨论了BHM-SVW参数的后验分布的动力学解释。从后验分布BHM-SVW的十个实现用于强制地中海实验性海洋预报系统的数据同化步骤,以创建一组整体条件。通过计算14天连续数据同化期间BHM-SVW后验分布的10个实现,通过计算10个集合成员上海洋状态变量场的标准偏差来量化集合的初始条件散布。合奏传播发生在中尺度的时空尺度上,与强天气尺度的风强迫事件密切相关。伴随论文比较了基于初始条件生成和BHM-SVW的预测强迫的MFS集合预报的性能,以及基于更传统的集合产生方法的预测

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号