首页> 外文OA文献 >A Dictionary Learning Approach for Poisson Image Deblurring
【2h】

A Dictionary Learning Approach for Poisson Image Deblurring

机译:泊松图像去模糊的字典学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The restoration of images corrupted by blur and Poisson noise is a key issue in medical and biological image processing. While most existing methods are based on variational models, generally derived from a Maximum A Posteriori (MAP) formulation, recently sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, we propose in this paper a model containing three terms: a patch-based sparse representation prior over a learned dictionary, the pixel-based total variation regularization term and a data-fidelity term capturing the statistics of Poisson noise. The resulting optimization problem can be solved by an alternating minimization technique combined with variable splitting. Extensive experimental results suggest that in terms of visual quality, PSNR value and the method noise, the proposed algorithm outperforms state-of-the-art methods.
机译:被模糊和泊松噪声破坏的图像的恢复是医学和生物图像处理中的关键问题。虽然大多数现有方法都基于通常从最大后验(MAP)公式得出的变化模型,但最近的图像稀疏表示已被证明是有效的图像恢复方法。遵循这一思想,我们在本文中提出了一个包含三个术语的模型:先于学习词典的基于补丁的稀疏表示,基于像素的总变化正则化术语以及捕获泊松噪声统计信息的数据保真度术语。最终的优化问题可以通过结合变量分割的交替最小化技术来解决。大量的实验结果表明,在视觉质量,PSNR值和方法噪声方面,所提算法优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号