首页> 外文OA文献 >Acoustic force measurements on polymer-coated microbubbles in a microfluidic device
【2h】

Acoustic force measurements on polymer-coated microbubbles in a microfluidic device

机译:在微流体装置中对聚合物涂覆的微泡进行声学力测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work presents an acoustofluidic device for manipulating coated microbubbles, designed for the simultaneous use of optical and acoustical tweezers. A comprehensive characterization of the acoustic pressure in the device is presented, obtained by the synergic use of different techniques in the range of acoustic frequencies where visual observations showed aggregation of polymer-coated microbubbles. In absence of bubbles, the combined use of laser vibrometry and finite element modelling supported a non-invasive measurement of the acoustic pressure and an enhanced understanding of the system resonances. Calibrated holographic optical tweezers were used for direct measurements of the acoustic forces acting on an isolated microbubble, at low driving pressures, and to confirm the spatial distribution of the acoustic field. This allowed quantitative acoustic pressure measurements by particle tracking, using polystyrene beads, and an evaluation of the related uncertainties. This process facilitated the extension of tracking to microbubbles, which have a negative acoustophoretic contrast factor, allowing acoustic force measurements on bubbles at higher pressures than optical tweezers, highlighting four peaks in the acoustic response of the device. Results and methodologies are relevant to acoustofluidic applications requiring a precise characterization of the acoustic field and, in general, to biomedical applications with microbubbles or deformable particles.
机译:这项工作提出了一种声流设备,用于处理涂覆的微气泡,旨在同时使用光学和声学镊子。提出了设备中声压的全面表征,这是通过在声学频率范围内协同使用不同技术获得的,声学观察表明聚合物涂覆的微泡聚集。在没有气泡的情况下,激光振动测定法和有限元建模的组合使用支持对声压进行非侵入式测量,并增强了对系统共振的理解。校准的全息光学镊子用于在低驱动压力下直接测量作用在隔离的微气泡上的声力,并确认声场的空间分布。这允许通过使用聚苯乙烯珠粒的颗粒跟踪进行定量声压测量,并评估相关的不确定性。此过程有助于将跟踪扩展到具有负声电泳对比度因子的微气泡,从而可以在比光学镊子更高的压力下对气泡进行声力测量,从而突出显示了设备声响应中的四个峰值。结果和方法与需要精确表征声场的声流体应用有关,并且通常与具有微气泡或可变形颗粒的生物医学应用有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号