首页> 外文OA文献 >Wind turbine fault detection through principal component analysis and statistical hypothesis testing
【2h】

Wind turbine fault detection through principal component analysis and statistical hypothesis testing

机译:通过主成分分析和统计假设检验进行风机故障检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work addresses the problem of online fault detection of an advanced wind turbine benchmark under actuators (pitch and torque) and sensors (pitch angle measurement) faults of different type. The fault detection scheme starts by computing the baseline principal component analysis (PCA) model from the healthy wind turbine. Subsequently, when the structure is inspected or supervised, new measurements are obtained and projected into the baseline PCA model. When both sets of data are compared, a statistical hypothesis testing is used to make a decision on whether or not the wind turbine presents some fault. The effectiveness of the proposed fault-detection scheme is illustrated by numerical simulations on a well-known large wind turbine in the presence of wind turbulence and realistic fault scenarios.
机译:这项工作解决了在不同类型的执行器(螺距和扭矩)和传感器(螺距角测量)故障下对高级风力发电机基准进行在线故障检测的问题。故障检测方案首先通过计算健康风力涡轮机的基准主成分分析(PCA)模型开始。随后,当对结构进行检查或监督时,将获得新的测量值并将其投影到基准PCA模型中。当比较两组数据时,将使用统计假设检验来确定风力涡轮机是否存在故障。在存在风湍流和实际故障场景的情况下,通过对著名的大型风力涡轮机进行数值模拟,说明了所提出的故障检测方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号