首页> 外文OA文献 >Adaptive system identification based on higher-order statistics
【2h】

Adaptive system identification based on higher-order statistics

机译:基于高阶统计量的自适应系统辨识

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The problem of estimating the autoregressive (AR) parameters of a causal AR moving average (ARMA) (p,q) process using higher-order statistic is addressed. It is shown that there is always a linear combination of p+1 slices that gives a full-rank Toeplitz matrix. This derivation proves that consistent estimates can always be obtained with this set of p+1, 1-D slices. These results lead to the development of a new adaptive lattice algorithm with improved performance. Some results are presented comparing this scheme with previous algorithms based on a single slice. Estimation of the MA parameters of the obtained AR-compensated sequence completes the identification of the system. As this method is based on cumulants, the estimation will be unbiased, even in the presence of colored Gaussian noise
机译:解决了使用高阶统计量估算因果AR移动平均值(ARMA)(p,q)过程的自回归(AR)参数的问题。结果表明,总是存在p + 1个切片的线性组合,从而给出了完整的Toeplitz矩阵。该推导证明,始终可以使用这组p + 1、1-D条带获得一致的估计。这些结果导致了新的具有改进性能的自适应晶格算法的发展。提出了一些结果,将该方案与基于单个切片的先前算法进行了比较。对获得的AR补偿序列的MA参数的估计完成了系统的识别。由于此方法基于累积量,因此即使存在有色高斯噪声,估计也将是无偏的

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号