首页> 外文OA文献 >A constraint-based hypergraph partitioning approach to coreference resolution
【2h】

A constraint-based hypergraph partitioning approach to coreference resolution

机译:一种基于约束的超图分割方法,用于共参考分辨率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objectives of this thesis are focused on research in machine learning for\udcoreference resolution. Coreference resolution is a natural language processing\udtask that consists of determining the expressions in a discourse that mention or\udrefer to the same entity.\udThe main contributions of this thesis are (i) a new approach to coreference\udresolution based on constraint satisfaction, using a hypergraph to represent\udthe problem and solving it by relaxation labeling; and (ii) research towards\udimproving coreference resolution performance using world knowledge extracted\udfrom Wikipedia.\udThe developed approach is able to use entity-mention classi cation model\udwith more expressiveness than the pair-based ones, and overcome the weaknesses\udof previous approaches in the state of the art such as linking contradictions,\udclassi cations without context and lack of information evaluating pairs. Furthermore,\udthe approach allows the incorporation of new information by adding\udconstraints, and a research has been done in order to use world knowledge to\udimprove performances.\udRelaxCor, the implementation of the approach, achieved results in the\udstate of the art, and participated in international competitions: SemEval-2010\udand CoNLL-2011. RelaxCor achieved second position in CoNLL-2011.
机译:本文的目标集中在针对\ udcoreference解析的机器学习研究中。共指解析是一种自然语言处理\ udtask,由确定话语中提及或\提到同一实体的表达式组成。\ ud本论文的主要贡献是(i)一种基于约束满足的共指\ udsolution的新方法。 ,使用超图表示问题,并通过松弛标记解决问题; (ud)从Wikipedia中提取的世界知识来研究\ udim提高共指解析性能。现有技术中的先前方法,例如,链接矛盾,没有上下文的无分类和缺乏信息评估对的方法。此外,该方法允许通过添加\ udconstraints来合并新信息,并且已经进行了一项研究,以便利用世界知识来\ dimproved性能。\ udRelaxCor(该方法的实现)在\ ud艺术,并参加了国际比赛:SemEval-2010 \ udand CoNLL-2011。 RelaxCor在CoNLL-2011中排名第二。

著录项

  • 作者

    Sapena Masip, Emili;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 spa
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号