首页> 外文OA文献 >An empirical overview of the No Free Lunch Theorem and its effect on Real-World Machine Learning Classification
【2h】

An empirical overview of the No Free Lunch Theorem and its effect on Real-World Machine Learning Classification

机译:免费午餐定理的实证概述及其对真实世界机器学习分类的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A sizable amount of research has been done to improve the mechanisms for knowledge extraction such as machine learning classification or regression. Quite unintuitively, the no free lunch (NFL) theorem states that all optimization problem strategies perform equally well when averaged over all possible problems. This fact seems to clash with the effort put forth toward better algorithms. This letter explores empirically the effect of the NFL theorem on some popular machine learning classification techniques over real-world data sets.
机译:为了改善诸如机器学习分类或回归之类的知识提取机制,已经进行了大量研究。无直觉地,免费午餐(NFL)定理指出,对所有可能的问题取平均后,所有优化问题策略的效果都一样好。这个事实似乎与为更好的算法而付出的努力相冲突。这封信从经验上探讨了NFL定理对现实世界数据集上一些流行的机器学习分类技术的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号