首页> 外文OA文献 >Tunable complete optical absorption in multilayer structures including u1d406u1d41eu1d7d0u1d412u1d41bu1d7d0u1d413u1d41eu1d7d3 without lithographic patterns
【2h】

Tunable complete optical absorption in multilayer structures including u1d406u1d41eu1d7d0u1d412u1d41bu1d7d0u1d413u1d41eu1d7d3 without lithographic patterns

机译:在多层结构中可调谐的完全光学吸收,包括没有光刻图案的多层结构,包括 u1d406 u1d41e u1d0d0 u1d412 u1d41b u1d7d0 u1d413 u1d41e u1d7d3

摘要

Controlling the spectral transmission, reflection, and absorption properties of optical structures is of great interest for many applications in photonics. Particularly, perfect absorbers over a wide frequency (wavelength) range are desirable for thin-film thermal emitters, thermo-solar cells, photodetectors, and smart windows. Up to date, several mechanisms have been proposed to achieve nearly 100% absorption in various frequency ranges of the electromagnetic spectrum; starting from microwaves to near infrared (NIR) and visible. One of the first demonstrations of a structure that was absorbing with nearly 100% efficiency was proposed by Landy et al. in 2008,[1] where metamaterial resonator arrays were used to achieve narrowband and highly resonant absorption of GHz and THz waves. The narrowband character of the resonances can be an advantage when absorbers with high quality factor are required and wavelength selectivity is desirable. However, there are many applications that need broadband absorption. To this end great efforts have been made during the last decade, for instance by mixing multiple resonances in a many-fold resonator, which can lead to, e.g., dual band[2] or multiband[3-9] resonant absorption. Unfortunately fabrication of these structures requires sophisticated techniques such as micro- or nano-lithography, severely limiting their scalability and increasing the cost of the absorber.
机译:对于光子学中的许多应用,控制光学结构的光谱透射,反射和吸收特性非常重要。特别是,对于薄膜热辐射器,热太阳能电池,光电探测器和智能窗户,理想的是在宽的频率(波长)范围内具有完美的吸收体。迄今为止,已经提出了几种机制来在电磁频谱的各个频率范围内实现近100%的吸收。从微波到近红外(NIR)都是可见的。 Landy等人提出了吸收效率接近100%的结构的首批演示之一。 2008年,[1]使用超材料谐振器阵列实现GHz和THz波的窄带和高谐振吸收。当需要具有高品质因数的吸收器并且需要波长选择性时,谐振的窄带特性可能是一个优势。但是,有许多应用需要宽带吸收。为此,在过去的十年中已经做出了巨大的努力,例如通过在多重谐振器中混合多个谐振,这可以导致例如双频带[2]或多频带[3-9]谐振吸收。不幸的是,这些结构的制造需要诸如微光刻或纳米光刻的复杂技术,从而严重限制了它们的可扩展性并增加了吸收器的成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号