首页> 外文OA文献 >Fuzzy integral based information fusion for classification of highly confusable non-speech sounds
【2h】

Fuzzy integral based information fusion for classification of highly confusable non-speech sounds

机译:基于模糊综合信息的融合算法用于高度混淆的非语音声音分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Acoustic event classification may help to describe acoustic scenes and contribute to improve the robustness of speech technologies. In this work, fusion of different information sources with the fuzzy integral (FI), and the associated fuzzy measure (FM), are applied to the problem\udof classifying a small set of highly confusable human non-speech sounds. As FI is a meaningful formalism for combining classifier outputs that can capture interactions among the various sources of information, it shows in our experiments a significantly better performance than\udthat of any single classifier entering the FI fusion module. Actually, that FI decision-level fusion approach shows comparable results to the high-performing SVM feature-level fusion and thus it seems to be a good choice when feature-level fusion is not an option. We have also observed that the importance and the degree of interaction among the various feature types given by the FM can be used for feature selection, and gives a valuable insight into the problem.
机译:声音事件分类可能有助于描述声音场景并有助于提高语音技术的鲁棒性。在这项工作中,将不同信息源与模糊积分(FI)以及相关的模糊测度(FM)的融合应用于分类少量高度混乱的人类非语音声音的问题。由于FI是组合分类器输出(可以捕获各种信息源之间的相互作用)的一种有意义的形式主义,因此在我们的实验中,它显示出比进入FI融合模块的任何单个分类器明显更好的性能。实际上,该FI决策级融合方法显示出与高性能SVM特征级融合相当的结果,因此,当无法选择特征级融合时,它似乎是一个不错的选择。我们还观察到,由FM提供的各种功能类型之间的交互作用的重要性和程度可以用于功能选择,并提供对该问题的宝贵见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号