首页> 外文OA文献 >Extraction and parametrization of grain boundary networks in glacier ice, using a dedicated method of automatic image analysis
【2h】

Extraction and parametrization of grain boundary networks in glacier ice, using a dedicated method of automatic image analysis

机译:利用专用的自动图像分析方法,对冰川中的晶界网络进行提取和参数化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microstructure analysis of polar ice cores is vital to understand the processes controlling the flow of polar ice on the microscale. This paper presents an automatic image processing framework for extraction and parametrization of grain boundary networks from images of the NEEM deep ice core. As cross-section images are acquired using controlled surface sublimation, grain boundaries and air inclusions appear dark, whereas the inside of grains appears grey. The initial segmentation step of the software is to separate possible boundaries of grains and air inclusions from background. A Machine learning approach is utilized to gain automatic, reliable classification, which is required for processing large data sets along deep ice cores. The second step is to compose the perimeter of section profiles of grains by planar sections of the grain surface between triple points. Ultimately, grain areas, grain boundaries and triple junctions of the later are diversely parametrized. High resolution is achieved, so that small grain sizes and local curvatures of grain boundaries can systematically be investigated.
机译:极地冰芯的微观结构分析对于了解在微尺度上控制极地冰流的过程至关重要。本文提出了一种自动图像处理框架,用于从NEEM深冰芯的图像中提取和参数化晶界网络。当使用受控的表面升华获取横截面图像时,晶界和空气夹杂物显得较暗,而晶粒内部则显示为灰色。该软件的初始分割步骤是将颗粒和空气夹杂物的可能边界与背景分离。利用机器学习方法来获得自动,可靠的分类,这是处理沿深冰芯的大型数据集所必需的。第二步是通过三点之间的晶粒表面的平面截面来组成晶粒截面轮廓的周长。最终,晶粒区域,晶粒边界和后者的三重结被不同地参数化。实现了高分辨率,因此可以系统地研究小晶粒尺寸和晶界的局部曲率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号