首页> 外文OA文献 >Assessment of eukaryotic communities in environmental samples: A workflow comparison for next-generation sequencing data
【2h】

Assessment of eukaryotic communities in environmental samples: A workflow comparison for next-generation sequencing data

机译:评估环境样品中的真核生物群落:下一代测序数据的工作流程比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To understand function and stability of ecosystems it is crucial to gain insights into their species composition, particulary in the face of global warming. Next Generation Sequencing (NGS) is the method of choice for getting fast overviews of species diversity in a high number of samples. Currently, there are lively discussions about bioinformatic techniques to enhance the quality of sequencing outputs and how to post process these data in order to estimate the “real” diversity as precisely as possible. In this study, we analyzed the protist composition of three water samples, collected in the Fram Strait in 2010. We compared different potential sequencing error corrected and uncorrected datasets, which were generated with widely used open-source software: QIIME, mothur and PhyloAssigner. Relative abundance of protist phyla was hardly affected by the choice of the software, quality filtering and error correction. However, the outputs differed strongly in relative abundance of diatom genera and were not comparable to dominant diatoms observed with light microscopy. Our main findings are beneficial for the enhancement of study design, data preparation and interpretation and gives insights into the optimization potential of NGS experiments in general.
机译:要了解生态系统的功能和稳定性,至关重要的是深入了解其生态系统的组成,尤其是面对全球变暖的情况。下一代测序(NGS)是快速获取大量样品中物种多样性概览的一种选择方法。当前,关于提高信息输出质量的生物信息技术以及如何对这些数据进行后处理,以便尽可能准确地估计“真实”多样性的热烈讨论。在这项研究中,我们分析了2010年在弗拉姆海峡采集的三个水样的生物量组成。我们比较了由广泛使用的开放源代码软件QIIME,mothur和PhyloAssigner生成的不同的潜在测序错误校正和未校正数据集。原生动物门的相对丰度几乎不受软件选择,质量过滤和纠错的影响。但是,硅藻属的相对丰度差异很大,并且与光学显微镜观察到的优势硅藻无法相比。我们的主要发现有益于增强研究设计,数据准备和解释,并为NGS实验的总体优化潜力提供见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号